1. Find the absolute maximum and the absolute minimum for the function $\mathbf{y}=\mathbf{2} \mathbf{x}^{\mathbf{4}}-\mathbf{1 2} \mathbf{x}^{\mathbf{3}}+\mathbf{2 2 0}$ on the interval $[1,5]$. If one doesn't exist, then be sure to None.
$y^{\prime}=8 x^{3}-36 x^{2}=4 x^{2}(2 x-9)$
The critical values are $x=0$ and $x=4.5$. Since the interval is $[1,5]$, don't use the critical value of $x=0$. Now test $x=4.5,1$, and 5

$$
\begin{array}{ll}
x=1 & y=210 \\
x=5 & y=-30 \\
x=4.5 & y=-53.375
\end{array}
$$

Absolute Max: 210

Absolute Min: - 53.375
2. If $x=2$ is a critical value for the function $f(x)$ and $f^{\prime \prime}(2)=20$, classify the critical value as a local maximum, local minimum or neither. If it can not be determined, then tell what additional information is needed.
the critical values is a local min.

