1. Find the absolute maximum and the absolute minimum for the function $\mathbf{y}=\mathbf{3} \mathbf{x}^{\mathbf{4}}-\mathbf{1 4 x} \mathbf{~} \mathbf{+ 2 5 0}$ on the interval $[2,6]$. If one doesn't exist, then be sure to None.
$y^{\prime}=12 x^{3}-42 x^{2}=6 x^{2}(2 x-7)$
The critical values are $x=0$ and $x=3.5$. Since the interval is [2,6], don't use the critical value of $x=0$. Now test $x=3.5,2$, and 6

$$
\begin{array}{ll}
x=2 & y=186 \\
x=6 & y=1114 \\
x=3.5 & y=99.9375
\end{array}
$$

Absolute Max: 1114

Absolute Min: 99.9375
2. If $x=-3$ is a critical value for the function $f(x)$ and $f^{\prime \prime}(-3)=4-78$, classify the critical value as a local maximum, local minimum or neither. If it can not be determined, then tell what additional information is needed.
the critical value will be a local max.

