Section 2.6: Additional Problems Solutions

1. This limit has an exponential part, $a=2\left(\frac{\pi}{2}\right)^{x}$. This is exponential growth since $\frac{\pi}{2}>1$. We know that as $x \rightarrow \infty$ then $a \rightarrow \infty$ and as $x \rightarrow-\infty$ then $a \rightarrow 0$.
(a) $\lim _{x \rightarrow \infty} 6+2\left(\frac{\pi}{2}\right)^{x}=\infty$
(b) $\lim _{x \rightarrow-\infty} 6+2\left(\frac{\pi}{2}\right)^{x}=6$
(c) $\lim _{x \rightarrow \infty} 6-2\left(\frac{\pi}{2}\right)^{x}=-\infty$ Notice the negative sign in front of the exponential part means the final answer changes sign.
(d) $\lim _{x \rightarrow-\infty} 6-2\left(\frac{\pi}{2}\right)^{x}=6$
2. This limit has an exponential part, $a=\left(\frac{\sqrt{7}}{3}\right)^{x}$. This is exponential decay since $\frac{\sqrt{7}}{3}<1$. We know that as $x \rightarrow \infty$ then $a \rightarrow 0$ and as $x \rightarrow-\infty$ then $a \rightarrow \infty$.
(a) $\lim _{x \rightarrow \infty} 5+\left(\frac{\sqrt{7}}{3}\right)^{x}=5$
(b) $\lim _{x \rightarrow-\infty} 5+\left(\frac{\sqrt{7}}{3}\right)^{x}=\infty$
(c) $\lim _{x \rightarrow \infty} \frac{2}{5+\left(\frac{\sqrt{7}}{3}\right)^{x}}=\frac{2}{5}$
3. This is end behavior of a polynomial, so you need to know the degree of the polynomial.
(a) Degree 6 (even) polynomial since the highest power is $-x^{6}$. Since the sign on this term is negative, we know both ends point down.
$\lim _{x \rightarrow \infty} 5 x-4 x^{6}=-\infty$
(b) Degree 8 (even) polynomial since the highest power is $4 x^{8}$. Since the sign on this term is positive, we know both ends point up.
$\lim _{x \rightarrow-\infty} 3 x^{7}+4 x^{8}+2=+\infty$
(c) Degree 3(odd) polynomial since the highest power is x^{3}. Since the sign on this term is positive, we know the left side points down and the right side points up.
$\lim _{x \rightarrow-\infty} x^{3}+5=-\infty$
(d) Degree 5(odd) polynomial since the highest power is $-2 x^{5}$. Since the sign on this term is negative, we know the left side points up and the right side points down.

$$
\lim _{x \rightarrow-\infty} x^{4}-2 x^{5}+5=+\infty
$$

4. There are multiple correct answers. Here is the easiest in factored form.

$$
y=\frac{(x-5)(7 x)}{x-5)(x+3)}
$$

5. (a) multiply top and bottom by $\frac{1}{x^{3}}$. This is the highest power of x in the denominator.
$\lim _{x \rightarrow \infty} \frac{6-3 x^{4}}{2 x^{3}+7}=\lim _{x \rightarrow \infty} \frac{\left(6-3 x^{4}\right) \frac{1}{x^{3}}}{\left(2 x^{3}+7\right) \frac{1}{x^{3}}}=\lim _{x \rightarrow \infty} \frac{\frac{6}{x^{3}}-3 x}{2+\frac{7}{x^{3}}}$
as $x \rightarrow \infty$ we see that $\frac{6}{x^{3}}$ and $\frac{7}{x^{3}}$ both go to zero. this means the denominator will go to the value of 2 . The numerator is a bit more interesting since the $-3 x \rightarrow-\infty$ as $x \rightarrow \infty$.

Thus $\lim _{x \rightarrow \infty} \frac{\frac{6}{x^{3}}-3 x}{2+\frac{7}{x^{3}}}=-\infty$
(b) multiply top and bottom by $\frac{1}{x^{3}}$. This is the highest power of x in the denominator.
$\lim _{x \rightarrow-\infty} \frac{6+3 x^{5}}{7-2 x^{3}}=\lim _{x \rightarrow-\infty} \frac{\left(6+3 x^{5}\right) \frac{1}{x^{3}}}{\left(7-2 x^{3}\right) \frac{1}{x^{3}}}=\lim _{x \rightarrow-\infty} \frac{\frac{6}{x^{3}}+3 x^{2}}{\frac{7}{x^{3}}-2}$
as $x \rightarrow \infty$ we see that $\frac{6}{x^{3}}$ and $\frac{7}{x^{3}}$ both go to zero. This means the denominator will go to the value of -2 . Note: the sign is the important part. The numerator is a bit more interesting since the $3 x^{2} \rightarrow \infty$ as $x \rightarrow \infty$.
$\lim _{x \rightarrow-\infty} \frac{\frac{6}{x^{3}}+3 x^{2}}{\frac{7}{x^{3}}-2}=-\infty$
6. (a) Since $x \rightarrow \infty$, we want exponental decay. i.e. $e^{k x}$ with $k<0$. So look at the denominator and pick the exponential that will get rid of the exponential growth in the denominator. We will multiply top and bottom by $e^{-6 x}$. This will ensure that the denominator will never be zero in the limit process.
$\lim _{x \rightarrow \infty} \frac{7 e^{-4 x}+5 e^{6 x}}{3 e^{6 x}-4 e^{-3 x}}=\lim _{x \rightarrow \infty} \frac{\left(7 e^{-4 x}+5 e^{6 x}\right) e^{-6 x}}{\left(3 e^{6 x}-4 e^{-3 x}\right) e^{-6 x}}=\lim _{x \rightarrow \infty} \frac{7 e^{-10 x}+5}{3-4 e^{-9 x}}=$
Since as $x \rightarrow \infty$ we know $e^{-10 x} \rightarrow 0$ and $e^{-9 x} \rightarrow 0$
Thus $\lim _{x \rightarrow \infty} \frac{7 e^{-4 x}+5 e^{6 x}}{3 e^{6 x}-4 e^{-3 x}}=\frac{0+5}{3-0}=\frac{5}{3}$
(b) Since $x \rightarrow-\infty$, we want exponential growth. i.e. $e^{k x}$ with $k>0$. So look at the denominator and pick the exponential that will get rid of the exponential decay in the denominator. We will multiply top and bottom by $e^{3 x}$. This will ensure that the denominator will never be zero in the limit process.
$\lim _{x \rightarrow-\infty} \frac{7 e^{-4 x}+5 e^{6 x}}{3 e^{6 x}-4 e^{-3 x}}=\lim _{x \rightarrow-\infty} \frac{\left(7 e^{-4 x}+5 e^{6 x}\right) e^{3 x}}{\left(3 e^{6 x}-4 e^{-3 x}\right) e^{3 x}}=\lim _{x \rightarrow-\infty} \frac{7 e^{-x}+5 e^{9 x}}{3 e^{9 x}-4}$
Since as $x \rightarrow-\infty$ we know $e^{9 x} \rightarrow 0$ and the $e^{-x} \rightarrow \infty$. This means the numerator will go to ∞ and the denominator will go to -4 .

Thus $\lim _{x \rightarrow-\infty} \frac{7 e^{-4 x}+5 e^{6 x}}{3 e^{6 x}-4 e^{-3 x}}=-\infty$
7. The highest power of x in the denominator is x^{3}, so multiply the numerator and denominator by $\frac{1}{x^{3}}$
$\lim _{x \rightarrow-\infty} \frac{x^{2}+\sqrt{5 x^{6}+6}}{6 x^{3}+1}=\lim _{x \rightarrow-\infty} \frac{\left(x^{2}+\sqrt{5 x^{6}+6}\right) \frac{1}{x^{3}}}{\left(6 x^{3}+1\right) \frac{1}{x^{3}}}=\lim _{x \rightarrow-\infty} \frac{\frac{1}{x}+\frac{1}{x^{3}} \sqrt{5 x^{6}+6}}{6+\frac{1}{x^{3}}}$
Since $x \rightarrow-\infty$ we see that $\frac{1}{x^{3}}=\frac{1}{x} \frac{1}{x} \frac{1}{x}=\frac{-1}{\sqrt{x^{2}}} \frac{-1}{\sqrt{x^{2}}} \frac{-1}{\sqrt{x^{2}}}=\frac{-1}{\sqrt{x^{6}}}$
$\lim _{x \rightarrow-\infty} \frac{\frac{1}{x}+\frac{1}{x^{3}} \sqrt{5 x^{6}+6}}{6+\frac{1}{x^{3}}}=\lim _{x \rightarrow-\infty} \frac{\frac{1}{x}+\frac{-1}{\sqrt{x^{6}}} \sqrt{5 x^{6}+6}}{6+\frac{1}{x^{3}}}=\lim _{x \rightarrow-\infty} \frac{\frac{1}{x}-\sqrt{\frac{1}{x^{6}}\left(5 x^{6}+6\right)}}{6+\frac{1}{x^{3}}}=$
$\lim _{x \rightarrow-\infty} \frac{\frac{1}{x}-\sqrt{5+\frac{6}{x^{6}}}}{6+\frac{1}{x^{3}}}=\frac{0-\sqrt{5}}{6+0}=\frac{-\sqrt{5}}{6}$
8. multiply by the conjugate $2 x+\sqrt{4 x^{2}+3 x+1}$

$$
\begin{aligned}
& \lim _{x \rightarrow \infty}\left(2 x-\sqrt{4 x^{2}+3 x+1}\right)=\lim _{x \rightarrow \infty}\left(2 x-\sqrt{4 x^{2}+3 x+1}\right) \frac{2 x+\sqrt{4 x^{2}+3 x+1}}{2 x+\sqrt{4 x^{2}+3 x+1}}= \\
& \lim _{x \rightarrow \infty} \frac{4 x^{2}-\left(4 x^{2}+3 x+1\right)}{2 x+\sqrt{4 x^{2}+3 x+1}}=\lim _{x \rightarrow \infty} \frac{-3 x-1}{2 x+\sqrt{4 x^{2}+3 x+1}}=
\end{aligned}
$$

now multiply top and bottom by $\frac{1}{x}$
$\lim _{x \rightarrow \infty} \frac{(-3 x-1) \frac{1}{x}}{\left(2 x+\sqrt{4 x^{2}+3 x+1}\right) \frac{1}{x}}=\lim _{x \rightarrow \infty} \frac{-3-\frac{1}{x}}{2+\frac{1}{x} \sqrt{4 x^{2}+3 x+1}}=$
since $x \rightarrow \infty$ we know that $\frac{1}{x}=\frac{1}{\sqrt{x^{2}}}$
$\lim _{x \rightarrow \infty} \frac{-3-\frac{1}{x}}{2+\frac{1}{\sqrt{x^{2}}} \sqrt{4 x^{2}+3 x+1}}=\lim _{x \rightarrow \infty} \frac{-3-\frac{1}{x}}{2+\sqrt{4+\frac{3}{x}+\frac{1}{x^{2}}}}=\frac{-3+0}{2+\sqrt{4+0+0}}=\frac{-3}{4}$
9. either multiply top and bottom by $\frac{1}{x^{5}}$ or factor out the x^{5} from the top and bottom and simplify.
$\lim _{x \rightarrow \infty} \frac{3 x^{4}+x^{5}+6}{7 x^{5}+2 x^{3}+7}=\lim _{x \rightarrow \infty} \frac{\frac{3}{x}+1+\frac{6}{x^{5}}}{7+\frac{2}{x^{2}}+\frac{7}{x^{5}}}=\frac{1}{7}$
10. first combine the logarithms into a single logarithm.
$\lim _{x \rightarrow \infty}\left[2 \ln (2 x+1)-\ln \left(2+x^{2}\right)\right]=\lim _{x \rightarrow \infty}\left[\ln (2 x+1)^{2}-\ln \left(2+x^{2}\right)\right]=\lim _{x \rightarrow \infty} \ln \left(\frac{(2 x+1)^{2}}{\left(2+x^{2}\right)}\right)$
$\lim _{x \rightarrow \infty} \ln \left(\frac{4 x^{2}+4 x+1}{2+x^{2}}\right)$
Now lets look at the fraction inside the logarithm and what it does with the limit.
$\lim _{x \rightarrow \infty} \frac{4 x^{2}+4 x+1}{2+x^{2}}=\lim _{x \rightarrow \infty} \frac{x^{2}\left(4+\frac{4}{x}+\frac{1}{x^{2}}\right)}{x^{2}\left(\frac{2}{x^{2}}+1\right)}=\lim _{x \rightarrow \infty} \frac{4+\frac{4}{x}+\frac{1}{x^{2}}}{\frac{2}{x^{2}}+1}=4$
Thus the final answer to the problem is
$\lim _{x \rightarrow \infty} \ln \left(\frac{4 x^{2}+4 x+1}{2+x^{2}}\right)=\ln (4)$
11. by the setup of the problem we know this uses the squeeze theorem. So we need to consider both limits.
$\lim _{x \rightarrow \infty} \frac{12 e^{x}-15}{4 e^{x}}=\lim _{x \rightarrow \infty}\left(\frac{12 e^{x}}{4 e^{x}}-\frac{15}{4 e^{x}}\right)=\lim _{x \rightarrow \infty} 3-\frac{15}{4} e^{-x}=3$
$\lim _{x \rightarrow \infty} \frac{3 \sqrt{x}}{\sqrt{x-1}}=\lim _{x \rightarrow \infty} 3 \sqrt{\frac{x}{x-1}}$
now consider $\lim _{x \rightarrow \infty} \frac{x}{x-1}$. (multiply to and bottom by $\frac{1}{x}$).
$\lim _{x \rightarrow \infty} \frac{x}{x-1}=\lim _{x \rightarrow \infty} \frac{1}{1-\frac{1}{x}}=1$.
thus $\lim _{x \rightarrow \infty} \frac{3 \sqrt{x}}{\sqrt{x-1}}=\lim _{x \rightarrow \infty} 3 \sqrt{\frac{x}{x-1}}=3 \sqrt{1}=3$

Finally we see that by the squeeze theorem $\lim _{x \rightarrow \infty} f(x)=3$.

