Section 3.1: Additional Problems Solutions

1. Use any method to find the derivative of $g(x)=|2 x+5|$

Note: Since we are taking the absolute value of a linear function, we know that $g(x)$ is a continuous function and will have a sharp point at $x=-2.5$.

As a piecewise defined function we know that $g(x)= \begin{cases}2 x+5 & \text { if } x \geq-2.5 \\ -(2 x+5) & \text { if } x<-2.5\end{cases}$
Thus $g^{\prime}(x)= \begin{cases}2 & \text { if } x \geq-2.5 \\ -2 & \text { if } x<-2.5\end{cases}$
2. At what point on the curve $y=x \sqrt{x}$ is the tangent line parallel to the line $3 x-y+6=0$?

Solving the line for slope intercept form gives: $y=3 x+6$.

Thus this question is asking at what point is the slope of the tangent line equal to 3 .
first $y=x \sqrt{x}=x^{1.5}$
$y^{\prime}=1.5 x^{0.5}=1.5 \sqrt{x}=\frac{3 \sqrt{x}}{2}$
set $y^{\prime}=3$ and solve for x .
$\frac{3 \sqrt{x}}{2}=3$
$3 \sqrt{x}=6$
$\sqrt{x}=2$
$x=4$.
thus the point is $(4, y(4))$ or $(4,8)$
3. Find the equation of the tangent line at $x=2$ for $f(x)=\frac{x}{x-1}$

The point that we want the tangent line at is $(2, f(2))$ or $(2,2)$.

Now find the slope of the tangent line.
$f^{\prime}(x)=\frac{(x-1) * 1-x *(1)}{(x-1)^{2}}=\frac{-1}{(x-1)^{2}}$
$m_{t a n}=f^{\prime}(2)=\frac{-1}{(2-1)^{2}}=-1$
Answer: $y-2=-1(x-2)$
4. Find the value(s) of x where the tangent line to $f(x)=\frac{x}{x-1}$ will go through the point $(6,-2)$. Show the work that verifies your answers.
Notice that the point $(6,-2)$ is not on the graph of the function.

Let the $x=A$ the value of x where the tangent line at that point will go through $(6,-2)$.
we will need $f(A)$ and $f^{\prime}(A)$.
$f^{\prime}(x)=\frac{(x-1) * 1-x *(1)}{(x-1)^{2}}=\frac{-1}{(x-1)^{2}}$
$f^{\prime}(A)=\frac{-1}{(A-1)^{2}}$ and $f(A)=\frac{A}{A-1}$
Now $y-f(A)=f^{\prime}(A)(x-A)$ is the equation of the tangent line.
$y-\frac{A}{A-1}=\frac{-1}{(A-1)^{2}}(x-A)$
now plug in the point for the x and y .
$-2-\frac{A}{A-1}=\frac{-1}{(A-1)^{2}}(6-A)$
now multiply both sides of the equation by $(A-1)^{2}$ to siplify the equation.
$-2(A-1)^{2}-A(A-1)=-(6-A)$
$-2\left(A^{2}-2 A+1\right)-A^{2}+A=-6+A$
$-2 A^{2}+4 A-2-A^{2}+A=-6+A$
$-3 A^{2}+4 A+4=0$ or $3 A^{2}-4 A-4=0$
$(3 A+2)(A-2)=0$
Answer: 2 and $\frac{-2}{3}$
5. Since $y=2 x+3$ is the tangent to the curve that means that at some value $x=A$, we know the slope of the tangent line is 2 . i.e. $f^{\prime}(A)=2$.

From the equation we know $f^{\prime}(x)=y^{\prime}=2 c x$. Thus we get that at $x=A$ the following.
$2=2 c A$ or $A=\frac{1}{c}$.
Since the tangent line and the function share the point at $x=A$, i.e. same y-values, we see that
$2 A+3=c A^{2}$.
now replace A with $A=\frac{1}{c}$ to get $\frac{2}{c}+3=c * \frac{1}{c^{2}}$ or $\frac{2}{c}+3=\frac{1}{c}$
multiplying the equation by c, since we know c is not zero, we get $2+3 c=1$ or $3 c=-1$ or $c=\frac{-1}{3}$
6. For $x \neq 2$ we know $f^{\prime}(x)= \begin{cases}2 x & \text { if } x<2 \\ m & \text { if } x>2\end{cases}$

For $f(x)$ to be differentiable at $x=2$ we need $f(x)$ to be continuous and smooth at $x=2$. This means we need $f^{\prime}(x)$ to be continuous at $x=2$.
$f^{\prime}(x)$ continuous needs
$\lim _{x \rightarrow 2^{-}} f^{\prime}(x)=\lim _{x \rightarrow 2^{+}} f^{\prime}(x)$ or $4=m$
$f(x)$ continuous needs
$\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{+}} f(x)$ or $4=2 m+b$
This means that $m=4$ and $b=-4$
7. $y=x^{5}+3 x^{3}+7 x^{2}$

$$
y^{\prime}=5 x^{4}+9 x^{2}+14 x
$$

8. $y=x^{3.5}+4 x^{1.5}+x^{0.5}$

$$
y^{\prime}=3.5 x^{2.5}+6 x^{0.5}+0.5 x^{-0.5}
$$

9. $y=x^{3 / 5}+x^{2 / 3}+7^{2}$

$$
y^{\prime}=\frac{3}{5} x^{-2 / 5}+\frac{2}{3} x^{-1 / 3}
$$

10. $y=14 x^{-10 / 7}+\pi^{4}+x^{1.8}$

$$
y^{\prime}=-20 x^{-17 / 7}+1.8 x^{0.8}
$$

11. $y^{\prime}=3 x^{2}-10 x+6$
$6=3 x^{2}-10 x+6$
$0=3 x^{2}-10 x$
$0=x(3 x-10)$
Answer: $x=0, x=\frac{10}{3}$
12. $x=-4, x=\frac{2}{3}$
13. $x=8, x=-4$
14. $f^{\prime}(x)=3 x^{2}+2 B x$ and we want $f^{\prime}(2)=30$

$$
\begin{aligned}
& 30=3(2)^{2}+2 B(2) \\
& 30=12+4 B
\end{aligned}
$$

Answer: $B=4.5$
15. $B=8$
16. The equation of the tangent line at $x=3$ is $y-12=6(x-3)$ or $y=6 x-6$ now set y to zero and solve for x.

Answer: $x=1$
17. $x=1.5$

