Section 4.1-4.3 Part 3 : Additional Problems Solutions

1. (a) function is continuous on the interval.
critical values: $x=2$ and $x=6$
both critical values are in the interval, so evaluate $f(1), f(2), f(6)$, and $f(9)$
abs max: 66
abs min: -15
(b) function is continuous on the interval.
critical values: $x=2$ and $x=6$
critical value $x=6$ is not in the interval, so only
evaluate $f(1), f(2)$, and $f(4)$
abs max: 17
abs min: 1
(c) function is continuous on the interval.
critical values: $x=2$ and $x=6$
critical value $x=2$ is not in the interval and the interval is not closed. evaluate $f(6)$ and look at the shape (increasing/decreasing) of the function on the given interval.
abs max: none
abs min: -15
2. (a) function is continuous on the interval.
critical values: none
only have to evaluate the ends of the interval: $f(0)$
and $f(2)$
abs max: 1
abs min: $\frac{1}{9}$
(b) vertical asymptote at $x=3$, so the function is not continuous on the interval.
critical values: none
examine the behavior of the function for values close to the vertical asymptote, i.e. $\lim _{x \rightarrow 4^{-}} f(x)$ and $\lim _{x \rightarrow 4^{+}} f(x)$, and the values of the ends of the interval.
abs max: none
abs min: $\frac{1}{16}$
(c) since the interval is all real numbers, look at the intervals where the function is increasing/decreasing as well as any vertical and horizontal asymptotes to draw a rough sketch of the function.
abs max: none
abs min: none
3. (a) abs max: 1
abs min: $\frac{-1}{8}$
(b) abs max: 3
abs min: none
(c) abs max: none
abs min: $\frac{-1}{8}$
4. (a) abs max: $\frac{1}{16}$ abs min: none
(b) abs max: $\frac{1}{12}$
abs min: none
(c) abs max: $\frac{1}{12}$
abs min: none
5. (a) abs max: $\frac{1}{3}$
abs min: $\frac{1}{4}$
(b) abs max: none abs min: none
6. Look at the graph of $f(x)$ on the given interval. abs max: 1
abs min: 0 since the interval includes the value of $x=\frac{-\pi}{2}$
