Section 4.7: Additional Problems Solutions

1. $A=(x+50) w$ with $2 x+50+2 w=500$ maximize $A=275 w-w^{2}$
answer: $w=137.5$ feet and $x=87.5$ feet
wall

2. $A=x(y)$ and $3 x+y=645$ $A=x(645-3 x)$
Answer: $x=107.5$ feet and $y=322.5$ feet

fence line
3. $C=10 * 3 x+10 * y$ and $x y=21675$
$C=30 x+\frac{216750}{x}$
answer: $x=85$ feet and $y=255$ feet

fence line
4. $C=10 *(2 x+2 y)+6 *(2 x+y)=32 x+26 y$ and $x y=832$

Answer: $x=26$ feet and $y=32$ feet
5. $\mathrm{x}=$ length of one of the sides of the base
$\mathrm{h}=$ height of the box.
$C=7 * x^{2}+3 *\left(4 * x h+x^{2}\right)=10 x^{2}+12 x * h$ and $x^{2} h=45$
$C=10 x^{2}+\frac{540}{x}$
answer: $x=3$ feet and $h=5$ feet
6. Here is the picture for this problem. Let L be the length of the cable.

Taking a derivative and solving $L^{\prime}=0$ gives $x=\frac{30}{7}$
With a first derivative sign chart, you can show that this value is a local min.
7. Here is the picture for this problem. Let C be the total cost of the pipeline.

Taking a derivative and solving $C^{\prime}=0$ gives $x=\frac{2(9-\sqrt{3})}{3}=4.845 \mathrm{~km}$
With a first derivative sign chart, you can show that this value is a local min.
8. Here is the picture for this problem. Let T be the total time spent on each section of the path.

Remember that distance $=$ rate $*$ time so $t=\frac{d}{r}$

$T=\frac{x}{5}+\frac{\sqrt{(6-x)^{2}+4}}{3}$
Taking a derivative and solving $T^{\prime}=0$ gives $x=\frac{9}{2}=4.5 \mathrm{mi}$
With a first derivative sign chart, you can show that this value is a local min.

