Section 4.9: Additional Problems Solutions

1.

(a) $f^{\prime}(x)=\frac{x^{4}+20 x^{2}+40}{5 x^{3}}=\frac{x^{4}}{5 x^{3}}+\frac{20 x^{2}}{5 x^{3}}+\frac{40}{5 x^{3}}=\frac{1}{5} x+4 x^{-1}+8 x^{-3}$

$$
f(x)=\frac{1}{5} \frac{x^{2}}{2}+4 \ln |x|+8 \frac{x^{-2}}{-2}=\frac{x^{2}}{10}+4 \ln |x|-\frac{4}{x^{2}}+C
$$

(b) $f^{\prime}(x)=\frac{3}{1+x^{2}}+\frac{7}{e^{2 x}}+\frac{15}{\sqrt{x}}+e^{2}=\frac{3}{1+x^{2}}+7 e^{-2 x}+15 x^{-1 / 2}+e^{2}$
$f(x)=3 \arctan (x)+\frac{7 e^{-2 x}}{-2}+\frac{15 x^{1 / 2}}{1 / 2}+e^{2} x+C$
$f(x)=3 \arctan (x)-\frac{7}{2} e^{-2 x}+30 \sqrt{x}+e^{2} x+C$
(c) $f^{\prime}(x)=\left(x \sqrt{x}+\frac{7}{x^{2}}+3\right)=x^{1.5}+7 x^{-2}+3$

$$
f(x)=\frac{x^{2.5}}{2.5}-7 x^{-1}+3 x+C=\frac{2}{5} x^{2.5}-7 x^{-1}+3 x+C
$$

(d) $f^{\prime}(x)=\left(x^{2}+5\right)\left(x^{4}+6\right)=x^{6}+5 x^{4}+6 x^{2}+30$

$$
f(x)=\frac{x^{7}}{7}+x^{5}+2 x^{3}+30 x+C
$$

(e) $f(x)=\frac{1}{4} e^{4 x}+2 \ln |x|+C$
(f) $f^{\prime}(x)=\frac{e^{4 x}+7 e^{2 x}}{e^{x}}=\left(e^{4 x}+7 e^{2 x}\right) * e^{-x}=e^{3 x}+7 e^{x}$

$$
f(x)=\frac{1}{3} e^{3 x}+7 e^{x}+C
$$

(g) $f^{\prime}(x)=\frac{e^{5 x}+2 x e^{2 x}}{e^{2 x}}=\left(e^{5 x}+2 x e^{2 x}\right) * e^{-2 x}=e^{3 x}+2 x$

$$
f(x)=\frac{1}{3} e^{3 x}+x^{2}+C
$$

(h) $f^{\prime}(x)=\left(x^{2}-3 x+1\right)^{2}=x^{4}-6 x^{3}+11 x^{2}-6 x+1$

$$
f(x)=\frac{x^{5}}{5}-\frac{6 x^{4}}{4}+\frac{11 x^{3}}{3}-3 x^{2}+x+C
$$

(i) $f^{\prime}(x)=\sqrt[4]{x^{5}}+\frac{1}{\sqrt[3]{x^{2}}}=x^{5 / 4}+x^{-2 / 3}$

$$
f(x)=\frac{4 x^{9 / 4}}{9}+3 x^{1 / 3}+C
$$

2. we know that $\frac{d}{d t} \cos (5 t)=-5 \sin (5 t)$ and $\frac{d}{d t} \tan (4 t)=4 \sec ^{2}(4 t)$
$\mathbf{r}^{\prime}(t)=\left\langle 4 \sec ^{2}(4 t), \sin (5 t)\right\rangle$
$\mathbf{r}(t)=\left\langle\tan (4 t)+c_{1}, \frac{-1}{5} \cos (5 t)+c_{2}\right\rangle$
or
$\mathbf{r}(t)=\left\langle\tan (4 t), \frac{-1}{5} \cos (5 t)\right\rangle+\mathbf{C}$, where $\mathbf{C}=\left\langle c_{1}, c_{2}\right\rangle$
3. we know $f^{\prime}(x)=12 x^{2}-6 x+2 \quad f(0)=1$ and $f(2)=0$
$f^{\prime \prime}(x)=4 x^{3}-3 x^{2}+2 x+C$
$f(x)=x^{4}-x^{3}+x^{2}+C x+D$
$f(0)=1$ gives $1=0^{4}-0^{3}+0^{2}+C * 0+D$ or $D=1$
$f(2)=0$ gives $0=2^{4}-2^{3}+2^{2}+C * 2+1$
or $0=13+2 C$ or $C=-7.5$

Answer: $f(x)=x^{4}-x^{3}+x^{2}-7.5 x+1$
4. $s(0)=0$ and $s(b)=160 \mathrm{ft}$. When $t=b$ the car is stopped so we also get $v(b)=0$.
$a(t)=-40 \mathrm{ft} / \mathrm{sec}^{2}$
$v(t)=-40 t+C$ since $v(0)=c$ the initial speed and $v(b)=0$ we find that $0=-40 b+c$ or $b=\frac{c}{40} \mathrm{ft} / \mathrm{sec}$.
$s(t)=-20 t^{2}+C t+D$ since we set $s(0)=0$ we find that $0=0+0+D$ or $D=0$.
since $s(b)=160$ we find that $160=-20 b^{2}+C b$ or
$160=-20\left(\frac{c}{40}\right)^{2}+c *\left(\frac{c}{40}\right)=-20 * \frac{c^{2}}{1600}+\frac{c^{2}}{40}=\frac{-c^{2}}{80}+\frac{c^{2}}{40}=\frac{c^{2}}{80}$
$160=\frac{c^{2}}{80}$ means that $c^{2}=160 * 80=12800$ or $c=113.14 \mathrm{ft} / \mathrm{sec}$.
This is equivalent to 77.14 mph
5. The first step is to get the speed into the correct units.
$60 \mathrm{mph}=88 \mathrm{ft} / \mathrm{sec}$.
(a) $s(0)=0, v(0)=88 \mathrm{ft} / \mathrm{sec}$ and $a(t)=-22 \mathrm{ft} / \mathrm{sec}^{2}$.
$v(t)=-22 t+C$ and since the initial speed is $88 \mathrm{ft} / \mathrm{sec}$, we see that $C=88$.
Thus $v(t)=-22 t+88$.
The car will come to a stop when $v(t)=0$ or $t=4 \mathrm{sec}$ (assuming no cow on the road).
$s(t)=-11 t^{2}+88 t+D$ where D is the initial position, $s(0)=0$ so we get $s(t)=-11 t^{2}+88 t$.
Now $s(4)=176 \mathrm{ft}$. Since the cow is 160 feet away when the breaks are fully applied, you did hit the cow.
(b) We want at $t=b$ the car to be at a stop, $v(b)=0,10$ feet away from the cow, or $s(b)=150$ feet.
Let k be the constant deceleration. so $a(t)=-k$
thus $v(t)=-k t+88$ and $s(t)=\frac{-k t^{2}}{2}+88 t$ (since the initial position is $s(0)=0$).
Since $v(b)=0$ we get $0=-k b+88$ or $k=\frac{88}{b}$
Since $s(b)=150$ we get $150=\frac{-k b^{2}}{2}+88 b$ or
$150=-\frac{88}{b} \frac{b^{2}}{2}+88 b \quad$ or $\quad 150=-44 b+88 b=44 b$
Thus $b=\frac{150}{44}=\frac{75}{22}$ seconds and $k=\frac{88}{b}=25.81 \mathrm{ft} / \mathrm{sec}$

