Section 2.2: Additional Problems Solutions

2. Evaluate these limits.
(a) If you plug in $x=5$ into $f(x)=\frac{1}{x-5}$, you get the form $\frac{\text { non-zero number }}{0}$. This means that $x=5$ is a vertical asymptote.
Now pick a number slightly larger than $x=5$, say 5.1 , since the limit is from the right and evaluate $f(x)$. Notice that both the numerator and the denominator are positive.
Thus $\lim _{x \rightarrow 5^{+}} \frac{1}{x-5}=+\infty$
(b) If you plug in $x=5$ into $f(x)=\frac{1}{x-5}$, you get the form $\frac{\text { non-zero number }}{0}$. This means that $x=5$ is a vertical asymptote.
Now pick a number slightly smaller than $x=5$, say 4.9 , since the limit is from the left and evaluate $f(x)$. Notice that the numerator is positive and the denominator is negative.
Thus $\lim _{x \rightarrow 5^{-}} \frac{1}{x-5}=-\infty$
(c) $\lim _{x \rightarrow 5} \frac{1}{x-5}=D N E$ since the left and right limits are not equal.
(d) If you plug in $x=0$ into $f(x)=\frac{x-5}{x^{2}}$, you get the form $\frac{\text { non-zero number }}{0}$. This means that $x=0$ is a vertical asymptote.
Now pick a number slightly larger than $x=0$, say 0.1 , since the limit is from the right and evaluate $f(x)$. Notice that the numerator is negative and the denominator is positive.
Thus $\lim _{x \rightarrow 0^{+}} \frac{x-5}{x^{2}}=-\infty$
Now pick a number slightly smaller than $x=0$, say -0.1 , since the limit is from the left and evaluate $f(x)$. Notice that the numerator is negative and the denominator is postive.
Thus $\lim _{x \rightarrow 0^{-}} \frac{x-5}{x^{2}}=-\infty$
Thus $\lim _{x \rightarrow 0} \frac{x-5}{x^{2}}=-\infty$ since both left and right limits agree.
(e) If you plug in $x=4$ into $f(x)=\frac{2-x}{4-x}$, you get the form $\frac{\text { non-zero number }}{0}$. This means that $x=4$ is a vertical asymptote.
Now pick a number slightly larger than $x=4$, say 4.1 , since the limit is from the right and evaluate $f(x)$. Notice that both the numerator and the denominator are negative.
Thus $\lim _{x \rightarrow 4^{+}} \frac{2-x}{4-x}=+\infty$
(f) If you plug in $x=4$ into $f(x)=\frac{2-x}{4-x}$, you get the form $\frac{\text { non-zero number }}{0}$. This means that $x=4$ is a vertical asymptote.
Now pick a number slightly smaller than $x=4$, say 3.9 , since the limit is from the left and evaluate $f(x)$. Notice that the numerator is negative and the denominator is positive.
$\lim _{x \rightarrow 4^{-}} \frac{2-x}{4-x}=-\infty$
(g) If you plug in $x=3$ into $f(x)=\frac{x-2}{x^{2}-9}$, you get the form $\frac{\text { non-zero number }}{0}$. This means that $x=3$ is a vertical asymptote.
Now pick a number slightly larger than $x=3$, say 3.1 , since the limit is from the right and evaluate $f(x)$. Notice that both the numerator and the denominator are postive.
Thus $\lim _{x \rightarrow 3^{+}} \frac{x-2}{x^{2}-9}=+\infty$
(h) If you plug in $x=3$ into $f(x)=\frac{x-2}{x^{2}-9}$, you get the form $\frac{\text { non-zero number }}{0}$. This means that $x=3$ is a vertical asymptote.
Now pick a number slightly smaller than $x=3$, say 2.9 , since the limit is from the left and evaluate $f(x)$. Notice that the numerator is positive and the denominator is negative.
$\lim _{x \rightarrow 3^{-}} \frac{x-2}{x^{2}-9}=-\infty$
(i) If you plug in $x=3$ into $f(x)=\frac{x-4}{x^{2}-9}$, you get the form $\frac{\text { non-zero number }}{0}$. This means that $x=3$ is a vertical asymptote.
Now pick a number slightly larger than $x=3$, say 3.1 , since the limit is from the right and evaluate $f(x)$. Notice that the numerator is negative and the denominator are postive.
Thus $\lim _{x \rightarrow 3^{+}} \frac{x-4}{x^{2}-9}=-\infty$
(j) If you plug in $x=3$ into $f(x)=\frac{x-2}{x^{2}-9}$, you get the form $\frac{\text { non-zero number }}{0}$. This means that $x=3$ is a vertical asymptote.
Now pick a number slightly smaller than $x=3$, say 2.9 , since the limit is from the left and evaluate $f(x)$. Notice that the numerator is negative and the denominator is negative.
$\lim _{x \rightarrow 3^{-}} \frac{x-4}{x^{2}-9}=+\infty$
