1) Find the equations of the tangents to the curve that pass through the point (17, 22).

$$
\begin{aligned}
& x=4 t^{2}+1 \\
& y=3 t^{3}-2
\end{aligned}
$$

Note: This problem is similar to the challenge problem number 4 from section 3.2
Let $t=A$ be the value of t that points to the point on the curve w hose tangent line w ill go through the
point (17, 22).
The general form of the tangent line is
$y-y(A)=\operatorname{man}^{\tan }(x-x(A))$

$$
m_{t / n}=\left.\frac{d y}{d x}\right|_{t=a}
$$

$$
\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{9 t^{2}}{8 t}=\left.\frac{9 t}{8} \quad \frac{d y}{d x}\right|_{t=A}=\frac{9 A}{8}
$$

Thus the equation of the tangent line is:

$$
y-\left(3 A^{3}-2\right)=\frac{9 A}{6}\left(x-\left(4 A^{2}+1\right)\right)
$$

This line goes through the point $\mathrm{x}=17$ and $\mathrm{y}=22$.

$$
\begin{aligned}
& 22-3 A^{3}+2=\frac{9 A}{8}\left(17-4 A^{2}-1\right) \\
& 8\left(24-3 A^{3}\right)=9 A\left(16-4 A^{3}\right) \\
& 192-24 A^{3}=144 A-36 A^{3} \\
& 12 A^{3}-144 A+192=0 \\
& 12\left(A^{3}-12 A+16\right)=0
\end{aligned}
$$

Now factor the cubic polynomial. This factoring can be a bit challenging.

Title : Oct 10-8:15 PM (Page 1 of 3)

Now factor the cubic polynomial. This factoring can be a bit challenging.

$$
12\left(A^{3}-12 A+16\right)=0
$$

If you examine the equation you can notice that $A=2$ is a solution. This takes a bit of plugging in numbers and trying for a solution.

Since $A=2$ is a solution, this means that $(A-2)$ is a factor of the above equation. Usin this fact and long division we can finnish factoring.

$$
\begin{gathered}
\frac{A^{2}+2 A-8}{A - 2 \longdiv { A ^ { 3 } + 0 A ^ { 2 } - 1 2 A + 1 6 }} \\
\frac{-\left(A^{3}-2 A^{2}\right)}{2 A^{2}-12 A} \\
\frac{-\left(2 A^{2}-4 A\right)}{-8 A+16} \\
-\frac{(-8 A+16)}{0}
\end{gathered}
$$

Thus we get the following. Now factor the quadratic.

$$
\begin{aligned}
& 12(A-2)\left(A^{2}+2 A-8\right)=0 \\
& 12(A-2)(A-2)(A+4)=0
\end{aligned}
$$

Thus $A=2$ or $A=-4$
general formula of the tangent line. created earlier in the problem.

$$
\begin{aligned}
& y-\left(3 A^{3}-2\right)=\frac{9 A}{8}\left(x-\left(4 A^{2}+1\right)\right) \\
& A=2 \\
& y-\left(3(2)^{3}-2\right)=\frac{9(2)}{8}\left(x-\left(4(2)^{2}+1\right)\right) \\
& y-22=\frac{9}{4}(x-17) \\
& A=-4 \\
& y+194=\frac{9}{2}(x-65)
\end{aligned}
$$

