Section 6.2: Additional Problems Solutions

1. Find the volume of the solid obtained by rotating the region bounded by the given curves around $y=15$.

$$
\begin{aligned}
& y=x^{2}+2 \\
& y=11
\end{aligned}
$$

Step 1: Graph the region and find the intersection values. $x^{2}+2=11$ gives $x^{2}=9$ or $x= \pm 3$.

Notice in the picture the slice is perpendicular to the x -axis, so this will be a $d x$ integral.

Step 2: Find the inner and outer radius.
$r_{i}=15-y=15-\left(x^{2}+2\right)=13-x^{2}$
$r_{o}=15-11=4$

Step 3: Setup the integral and integrate.

$$
\begin{aligned}
& V=\int_{-3}^{3} \pi\left[r_{o}^{2}-r_{i}^{2}\right] d x=\int_{-3}^{3} \pi\left[\left(13-x^{2}\right)^{2}-4^{2}\right] d x=\int_{-3}^{3} \pi\left(169-26 x^{2}+x^{4}-16\right) d x \\
& V=2 \pi \int_{0}^{3} 153-26 x^{2}+x^{4} d x=\left.2 \pi\left(153 x-\frac{26 x^{3}}{3}+\frac{x^{5}}{5}\right)\right|_{0} ^{3}=2 \pi\left(152 * 3-\frac{26 * 3^{3}}{3}+\frac{3^{5}}{5}-(0)\right) \\
& V=547.2 \pi
\end{aligned}
$$

2. The base of a solid is the triangle that is enclosed by the points $(0,4),(2,0)$, and $(-1,0)$. Crosssections that are perpendicular to the y-axis are semicircles. Set up the integral(s) that would give the volume of the solid.
Step 1: Draw the base of the solid and the slice.
Step 2: Find the equations of lines labled y_{1} and y_{2}.
$y_{2}=-2 x+4$
$y_{1}=4 x+4$
Step 3: Find the Area of the cross section.

The cross section is a semicircle so the area is $A=\frac{1}{2} \pi r^{2}$, where the radius r is half the length of the slice.

Length of the slice $=x_{2}-x_{1}$ where x_{1} is found by solving line y_{1} for x . (Similar for x_{2}).
Length of the slice $=x_{1}-x_{2}=\frac{y-4}{-2}-\frac{y-4}{4}=\frac{12-3 y}{4}$ so the radius is $r=\frac{1}{2}\left(\frac{12-3 y}{4}\right)=\frac{12-3 y}{8}$.
$V=\int_{0}^{4} \frac{\pi}{2}\left(\frac{12-3 y}{8}\right)^{2} d y$
3. Find the volume of the solid obtained by rotating the region bounded by the given curves around $x=-2$.

$$
\begin{aligned}
& y=x^{4} \\
& x=y^{4}
\end{aligned}
$$

Step 1: Graph the functions.
The slice is not drawn, but a horizontal slice will be used and rotated about the vertical line $x=-2$. This means we will be using a $d y$ integral.
The intersection points of the curves are $(0,0)$ and $(1,1)$.

Step 2: Find the formula for the inner and outer radius.
$r_{o}=\sqrt[4]{y}-(-2)=\sqrt[4]{y}+2$

$r_{i}=y^{4}-(-2)=y^{4}+2$
Step 3: Setup and evaluate the integral.
$V=\int_{0}^{1} \pi\left[\left(y^{0.25}+2\right)^{2}-\left(y^{4}+2\right)^{2}\right] d y=\pi \int_{0}^{1} y^{0.5}+4 y^{0.25}+4-\left(y^{8}+4 y^{4}+4\right) d y$
$V=\pi \int_{0}^{1} y^{0.5}+4 y^{0.25}-y^{8}-4 y^{4} d y=\cdots=\frac{133 \pi}{45}$
4. Find the volume of the solid obtained by rotating the region bounded by the given curves around $x=7$.

$$
\begin{aligned}
& x=y^{2}+3 \\
& x=7
\end{aligned}
$$

Step 1: Graph the region.
Based on the slice that is shown, the integral will be a dy integral.
When $x=7$ the y-values are $7=y^{2}+3$ or $y^{2}=4$ or $y= \pm 2$.
Step 2: Find the radius.
The radius of the slice is $r=7-x=7-\left(y^{2}+3\right)=4-y^{2}$. Step 3: set up the integral and evaluate.
$V=\int_{-2}^{2} \pi\left(4-y^{2}\right)^{2} d y=2 \int_{0}^{2} \pi\left(4-y^{2}\right)^{2} d y=2 \pi \int_{0}^{2} 16-8 y^{2}+y^{4} d y$
$V=\left.2 \pi\left(16 y-\frac{8 y^{3}}{3}+\frac{y^{5}}{5}\right)\right|_{0} ^{2}=2 \pi *\left(32-\frac{64}{3}+\frac{32}{5}\right)=\frac{512 \pi}{15}$

