Section 6.3: Additional Problems Solutions

1) Set up the integral(s) that would give the volume of the solid obtained by rotating the region bounded by the given curves around the $x=-2$.
$y=-2 x+12$
$y=0.5 x^{2}-4 x+6$
Step 1: sketch the graph of the region rotated and find the intersection values of the curves.
$-2 x+12=0.5 x^{2}-4 x+6$
$0=0.5 x^{2}-2 x-6$
$0=x^{2}-4 x-12$
$0=(x-6)(x+2)$
$x=6$ ot $x=-2$

This is a dx integral since the slice is perpendicular to the x-axis.

Step 2: Now find the formula for the radius and the height.
$h=-2 x+12-\left(0.5 x^{2}-4 x+6=-0.5 x^{2}+2 x+6\right.$ (top - bottom)
$r=x-(-2)=x+2$ (right - left)
Step 3: Setup the integral.
$V=\int_{-2}^{6} 2 \pi r h d x=\int_{-2}^{6} 2 \pi(x+2)\left(-0.5 x^{2}+2 x+6\right) d x=\cdots=\frac{1024 \pi}{3}$
2) Set up the integral(s), using both methods washer/disk and cylindrical shells, that would give the volume of the solid obtained by rotating the region bounded by the following around $y=4$. Compute this volume using the method that seems the easiest.
$y=\sqrt{x-2}$
$y=0$
$x=6$

Washer Method:
This is a dx integral since the slice is perpendicular to the x-axis.
outer radius: $r_{o}=4$
inner radius: $r_{i}=4-\sqrt{x-2}$ (top - bottom)
Integral: $\int_{2}^{6} \pi\left[4^{2}-(4-\sqrt{x-2})^{2}\right] d x$

Cylindrical shell method:
This is a dy integral since the slice(solid red line segment) is perpendicular to the y-axis.
Need to solve the square root function for $x=$.
$y=\sqrt{x-2}$ becomes $x=y^{2}+2$
$r=4-y($ top - bottom $)$
$h=6-\left(y^{2}+2\right)=4-y^{2}($ right - left $)$
Integral: $\int_{0}^{2} 2 \pi(4-y)\left(4-y^{2}\right) d y$
Of the two integrals, the shell method is the easier one to compute.
$\int_{0}^{2} 2 \pi(4-y)\left(4-y^{2}\right) d y=2 \pi \int_{0}^{2} 16-4 y-4 y^{2}+y^{3} d y$

$=2 \pi\left[16 y-2 y^{2}-\frac{4 y^{3}}{3}+\frac{y^{4}}{4}\right]_{0}^{2}=2 \pi\left[32-8-\frac{32}{3}+4-(0)\right]=\cdots=\frac{104 \pi}{3}$
3) Set up the integral(s), using both methods washer/disk and cylindrical shells, that would give the volume of the solid obtained by rotating the region bounded by the following around $x=-3$. Compute this volume using the method that seems the easiest.
$y=\sqrt{x-2}$
$y=0$
$x=6$
Washer Method:

This is a dy integral since the slice is perpendicular to the x -axis.
Need to solve the square root function for $x=$.
$y=\sqrt{x-2}$ becomes $x=y^{2}+2$
outer radius: $r_{o}=6-(-3)=9$ (right - left)
inner radius: $r_{i}=x-(-3)=x+3=y^{2}+2+3=y^{2}+5$ (right - left)
Inegral: $\int_{0}^{2} \pi\left[9^{2}-\left(y^{2}+5\right)^{2}\right] d y$

Cylindrical shell method:

This is a dx integral since the slice(solid red line segment) is perpendicular to the x -axis. $r=x-(-3)=x+3$ (right - left)
$h=y-0=\sqrt{x-2}$ (top-bottom)
Inegral: $\int_{2}^{6} 2 \pi(x+3) \sqrt{x-2} d x$
Of the two methods, the washer is the easiest to integrate.
$V=\int_{0}^{2} \pi\left[9^{2}-\left(y^{2}+5\right)^{2}\right] d y=\cdots=\frac{1184 \pi}{15}$

