Section 7.4: Additional Problems Solutions

1. First factor the denominator.

$$
\begin{aligned}
& \frac{x^{2}-4 x+4}{\left(x^{2}+2 x\right)\left(x^{2}-25\right)^{2}\left(x^{2}+9\right)}=\frac{x^{2}-4 x+4}{x(x+2)(x+5)^{2}(x-5)^{2}\left(x^{2}+9\right)} \\
& \text { Answer: } \frac{A}{x}+\frac{B}{x+2}+\frac{C}{x+5}+\frac{D}{(x+5)^{2}}+\frac{E}{x-5}+\frac{F}{(x-5)^{2}}+\frac{G x+H}{x^{2}+9}
\end{aligned}
$$

2. Since the degree of the denominator is not larger than the degree of the numerator, the first step is long division.

1

$$
\begin{aligned}
& x^{4}+2 x^{2}+1 \begin{array}{r}
x^{4}+2 x^{3}+0 x^{2}+0 x+7 \\
-\left(x^{4}+0 x^{3}+2 x^{2}+0 x+1\right)
\end{array} \\
& 2 x^{3}-2 x^{2}+6
\end{aligned}
$$

$$
\frac{x^{4}+2 x^{3}+7}{x^{4}+2 x^{2}+1}=1+\frac{2 x^{3}-2 x^{2}+6}{x^{4}+2 x^{2}+1}
$$

Now factor the denominator and then do do the decomposition.
$1+\frac{2 x^{3}-2 x^{2}+6}{x^{4}+2 x^{2}+1}=1+\frac{2 x^{3}-2 x^{2}+6}{\left(x^{2}+1\right)^{2}}$
Answer: $1+\frac{A x+B}{x^{2}+1}+\frac{C x+D}{\left(x^{2}+1\right)^{2}}$
3. Since the degree of the denominator is larger than the degree of the numerator, long division is not needed.

$$
\begin{aligned}
\frac{1}{x^{2}(x+1)} & =\frac{A}{x}+\frac{B}{x^{2}}+\frac{C}{x+1} \\
\frac{1}{x^{2}(x+1)} & =\frac{A x(x+1)}{x x(x+1)}+\frac{B(x+1)}{x^{2}(x+1)}+\frac{C x^{2}}{(x+1) x^{2}} \\
1 & =A x(x+1)+B(x+1)+C x^{2} \quad \text { equation } 1 \\
1 & =A\left(x^{2}+x\right)+B(x+1)+C x^{2} \quad \text { equation } 2
\end{aligned}
$$

Method of equating coefficents: use equation 2 to get the followingequations.

$$
\begin{array}{ll}
\underline{x^{2} \mid} & 0=A+C \\
\underline{x \mid} & 0=A+B \\
\underline{\text { constant } \mid} & 1=B
\end{array}
$$

Solving these equations gives $A=-1, B=1$, and $C=1$.

Evaluation Method: use equation 1 to get the following.
evaluate $x=0$ to get $1=B$
evaluate $x=-1$ to get $1=C$
To solve for A either plug in another value for x or use the equations in the Equate Coefficents Method to find that $A=-1$.
$\int \frac{1}{x^{3}+x^{2}} d x=\int\left(\frac{-1}{x}+\frac{1}{x^{2}}+\frac{1}{x+1}\right) d x=-\ln |x|-\frac{1}{x}+\ln |x+1|+C$
4. The first step is doing the long division.

$$
\begin{array}{r}
\\
\hline 7 x^{2}+2 x+8 \\
\left.4 x^{2}\right) \\
\hline 3 x^{2}+2 x+8
\end{array}
$$

$$
\begin{array}{r|r}
x^{3}+4 x^{2} & \begin{array}{r}
x^{3}+7 x^{2}+2 x+8 \\
-\left(x^{3}+4 x^{2}\right) \\
\downarrow \\
\downarrow
\end{array}
\end{array} \quad \frac{x^{3}+7 x^{2}+2 x+8}{x^{3}+4 x^{2}}=1+\frac{3 x^{2}+2 x+8}{x^{3}+4 x^{2}}
$$

Thus $\int \frac{x^{3}+7 x^{2}+2 x+8}{x^{3}+4 x^{2}} d x=\int\left(1+\frac{3 x^{2}+2 x+8}{x^{3}+4 x^{2}}\right) d x=\int\left(1+\frac{3 x^{2}+2 x+8}{x^{2}(x+4)}\right) d x$
Now do the partial fraction decomposition of the fraction $\frac{3 x^{2}+2 x+8}{x^{2}(x+4)}$

$$
\begin{aligned}
& \frac{3 x^{2}+2 x+8}{x^{2}(x+4)}=\frac{A}{x}+\frac{B}{x^{2}}+\frac{C}{x+4} \\
& \frac{3 x^{2}+2 x+8}{x^{2}(x+4)}=\frac{A x(x+4)}{x x(x+4)}+\frac{B(x+4)}{x^{2}(x+4)}+\frac{C x^{2}}{(x+4) x^{2}} \\
& 3 x^{2}+2 x+8=A x(x+4)+B(x+4)+C x^{2} \quad \text { equation 1 } \\
& 3 x^{2}+2 x+8=A\left(x^{2}+4 x\right)+B(x+4)+C x^{2} \quad \text { equation 2 }
\end{aligned}
$$

Equate Coefficents Method: use equation 2 to get the following equations

$$
\begin{array}{ll}
\underline{x^{2} \mid} & 3=A+C \\
\underline{x \mid} & 2=4 A+B \\
\underline{\text { constant } \mid} & 8=4 B
\end{array}
$$

From these equations we can see that $B=2, A=0$ and $C=3$.

Evaluation Method: use equation 1 to get the following.
evaluate $x=0$ to get $8=4 B$ or $B=2$
evaluate $x=-4$ to get $48=16 C$ or $C=3$
To solve for A either plug in another value for x or use the equations in the Equate Coefficents Method to find that $A=0$.

$$
\int\left(1+\frac{3 x^{2}+2 x+8}{x^{2}(x+4)}\right) d x=\int\left(1+\frac{2}{x^{2}}+\frac{3}{x+4}\right) d x=x-\frac{2}{x}+3 \ln |x+4|+C
$$

5. Since the degree of the denominator is larger than the degree of the numerator, long division is not needed.

$$
\begin{aligned}
\frac{2 x+1}{(x+3)\left(x^{2}+1\right)^{2}} & =\frac{A}{x+3}+\frac{B x+C}{x^{2}+1}+\frac{D x+E}{\left(x^{2}+1\right)^{2}} \\
\frac{2 x+1}{(x+3)\left(x^{2}+1\right)^{2}} & =\frac{A\left(x^{2}+1\right)^{2}}{(x+3)\left(x^{2}+1\right)^{2}}+\frac{(B x+C)(x+3)\left(x^{2}+1\right)}{\left(x^{2}+1\right)(x+3)\left(x^{2}+1\right)}+\frac{(D x+E)(x+3)}{\left(x^{2}+1\right)^{2}(x+3)} \\
2 x+1 & =A\left(x^{2}+1\right)^{2}+(B x+C)(x+3)\left(x^{2}+1\right)+(D x+E)(x+3) \quad \text { equation } 1 \\
2 x+1 & =A\left(x^{4}+2 x^{2}+1\right)+(B x+C)\left(x^{3}+3 x^{2}+x+3\right)+(D x+E)(x+3) \\
2 x+1 & =A\left(x^{4}+2 x^{2}+1\right)+B\left(x^{4}+3 x^{3}+x^{2}+3 x\right)+
\end{aligned}
$$

$$
C\left(x^{3}+3 x^{2}+x+3\right)+D\left(x^{2}+3 x\right)+E(x+3) \quad \text { equation } 2
$$

Evaluation Method: use equation 1 to get the following.
The only number that will allow us to quickly solve for a constant is $x=-3$. Using equation 1 gives $-5=A(10)^{2}$ or $A=\frac{-1}{20}$

Equate Coefficents Method: use equation 2 to get the following.

$\underline{x^{4} \mid}$	$0=A+B$	
$\underline{x^{3} \mid}$	$0=3 B+C$	equation 3
$\underline{x^{2} \mid}$	$0=2 A+B+3 C+D$	equation 4
$\underline{x \mid}$	$2=3 B+C+3 D+E$	
equation 5		
$\underline{\text { constant } \mid}$	$1=A+3 C+3 E$	

Using the value of A that was found with the Evaluation method, we can quickly solve equation 3 to find $B=\frac{1}{20}$. Using this value and equation 4 we fget that $C=\frac{-3}{20}$. Now these values combined with equation 5 and equation 7 gives $D=\frac{1}{2}$ and $E=\frac{1}{2}$.
for the trig sub work see number 3 in the 7.3 additional problems.
Answer: $\frac{-1}{20} \ln |x+3|+\frac{1}{40} \ln \left|x^{2}+1\right|+\frac{3}{20} \arctan (x)-\frac{1}{4\left(x^{2}+1\right)}+\frac{1}{2}\left[\frac{1}{2} \arctan (x)+\frac{x}{2\left(x^{2}+1\right)}\right]+C$

$$
\begin{aligned}
& \int \frac{2 x+1}{(x+3)\left(x^{2}+1\right)^{2}} d x=\int\left(\frac{\frac{-1}{20}}{x+3}+\frac{\frac{1}{20} x+\frac{3}{20}}{x^{2}+1}+\frac{\frac{1}{20} x+\frac{1}{20}}{\left(x^{2}+1\right)^{2}}\right) d x
\end{aligned}
$$

