Section 7.8: Additional Problems Solutions

1. The integral is improper since $x=-2$ is not in the domain of the function that we are integrating. Now lets find the anti-derivative. There are two methods to do this.

Method 1: Trig. Sub.

We need $x^{2}=4 \sin ^{2} \theta$ so let $x=2 \sin \theta$. This means that $d x=2 \cos \theta d \theta$

$$
\begin{gathered}
\int \frac{1}{\sqrt{4-x^{2}}} d x=\int \frac{2 \cos \theta}{\sqrt{4-4 \sin ^{2} \theta}} d \theta=\int \frac{2 \cos \theta}{\sqrt{4 \cos ^{2} \theta}} d \theta=\int \frac{2 \cos \theta}{2 \cos \theta} d \theta \\
=\int 1 d \theta=\theta+C=\arcsin \left(\frac{x}{2}\right)+C
\end{gathered}
$$

Method 2: u-sub.
$\int \frac{1}{\sqrt{4-x^{2}}} d x=\int \frac{1}{\sqrt{4\left(1-\frac{x^{2}}{4}\right)}} d x=\int \frac{1}{2 \sqrt{1-\left(\frac{x}{2}\right)^{2}}} d x$
now let $u=\frac{x}{2}$ so we get $d u=\frac{1}{2} d x$ or $2 d u=d x$

$$
=\frac{1}{2} \int \frac{2}{\sqrt{1-u^{2}}} d u=\int \frac{1}{\sqrt{1-u^{2}}} d u=\arcsin (u)+C=\arcsin \left(\frac{x}{2}\right)+C
$$

Note: The anti-derivative rule used was from section 3.5 in the textbook(covered in Math 151).

$$
\begin{aligned}
\int_{-2}^{0} \frac{1}{\sqrt{4-x^{2}}} d x=\lim _{t \rightarrow-2^{+}} \int_{t}^{0} \frac{1}{\sqrt{4-x^{2}}} d x=\left.\lim _{t \rightarrow-2^{+}} \arcsin \left(\frac{x}{2}\right)\right|_{t} ^{0}=\lim _{t \rightarrow-2^{+}}\left[\arcsin (0)=\arcsin \left(\frac{t}{2}\right)\right] \\
=0-\arcsin (-1)=0-\frac{-\pi}{2}=\frac{\pi}{2}
\end{aligned}
$$

Since the result is a number, we know the integral converges. Thus the integral converges to $\frac{\pi}{2}$.
2. This integral is improper since ∞ is one of the limits of the integration. Lets first find the anti-derivative. This is an integration by parts integral.
$\int \frac{2 x}{e^{x}} d x=\int 2 x e^{-x} d x=-2 x e^{-x}-2 e^{-x}+C=\frac{-2 x}{e^{x}}-\frac{2}{e^{x}}+C$
$\int_{3}^{\infty} \frac{2 x}{e^{x}} d x=\lim _{t \rightarrow \infty} \int_{3}^{t} \frac{2 x}{e^{x}} d x=\left.\lim _{t \rightarrow \infty}\left(\frac{-2 x}{e^{x}}-\frac{2}{e^{x}}\right)\right|_{3} ^{t}=\lim _{t \rightarrow \infty}\left[\frac{-2 t}{e^{t}}-\frac{2}{e^{t}}-\left(-6 e^{-3}-2 e^{-3}\right)\right]=8 e^{-3}$
since $\lim _{t \rightarrow \infty} \frac{2}{e^{t}}=0$ and $\lim _{t \rightarrow \infty} \frac{-2 t}{e^{t}} \stackrel{L^{\prime} H}{=} \lim _{t \rightarrow \infty} \frac{-2}{e^{t}}=0$
Since the result is a number, we know the integral converges. Thus the integral converges to $8 e^{-3}$.
3. This integral is improper since the function is undefined at $x=1$. Since this value is between the limits of the limits of the integral, we will need to break this into two separate integrals. Lets first find the anti-derivative by a u-sub.

Let $u=x-1$ then $d u=d x$
$\int \frac{1}{\sqrt[3]{x-1}} d x=\int \frac{1}{\sqrt[3]{u}} d u=\int u^{-1 / 3} d u=\frac{3}{2} u^{2 / 3}+C=\frac{3}{2}(x-1)^{2 / 3}+C$
$\int_{0}^{9} \frac{1}{\sqrt[3]{x-1}} d x=\int_{0}^{1} \frac{1}{\sqrt[3]{x-1}} d x+\int_{1}^{9} \frac{1}{\sqrt[3]{x-1}} d x$ so now we compute each integral.

- $\int_{0}^{1} \frac{1}{\sqrt[3]{x-1}} d x=\lim _{t \rightarrow 1^{-}} \int_{0}^{t} \frac{1}{\sqrt[3]{x-1}} d x=\left.\lim _{t \rightarrow 1^{-}} \frac{3}{2}(x-1)^{2 / 3}\right|_{0} ^{t}$
$=\lim _{t \rightarrow 1^{-}}\left(\frac{3}{2}(t-1)^{2 / 3}-\frac{3}{2}(-1)^{2 / 3}\right)=0-\frac{3}{2}=\frac{-3}{2}$
- $\int_{1}^{9} \frac{1}{\sqrt[3]{x-1}} d x=\lim _{t \rightarrow 1^{+}} \int_{t}^{9} \frac{1}{\sqrt[3]{x-1}} d x=\left.\lim _{t \rightarrow 1^{+}} \frac{3}{2}(x-1)^{2 / 3}\right|_{t} ^{9}$

$$
=\lim _{t \rightarrow 1^{+}}\left(\frac{3}{2}(8)^{2 / 3}-\frac{3}{2}(t-1)^{2 / 3}\right)=\left(\frac{3}{2}\right)(4)-0=6
$$

Since both of the integrals converge we know the original integral will converge.
Answer: $\int_{0}^{9} \frac{1}{\sqrt[3]{x-1}} d x=\frac{-3}{2}+6=\frac{9}{2}$
4. We need to find a comparison that can be used to determine if the integral is convergent or divergent.

$$
\begin{aligned}
& -1 \leq \quad \cos (x) \quad \leq 1 \\
& -3 \leq 3 \cos (x) \quad \leq 3 \\
& 2 \leq 3 \cos (x)+5 \leq 8 \\
& \frac{2}{\sqrt[3]{x}} \leq \frac{3 \cos (x)+5}{\sqrt[3]{x}} \leq \frac{8}{\sqrt[3]{x}}
\end{aligned}
$$

Since we are considering values of x such that $x \geq 2$ we see that all of the terms are positive.
The integrals $\int_{2}^{\infty} \frac{2}{\sqrt[3]{x}} d x$ and $\int_{2}^{\infty} \frac{8}{\sqrt[3]{x}} d x$ are both p-integrals with $p=\frac{1}{3}$. Both of these integrals will diverge.
Thus the comparison theorem says since $\int_{2}^{\infty} \frac{2}{\sqrt[3]{x}} d x$ diverges then $\int_{2}^{\infty} \frac{3 \cos (x)+5}{\sqrt[3]{x}} d x$ will also diverge.
5. We need to find a comparison that can be used to determine if the integral is convergent or divergent.

$$
\begin{aligned}
& -1 \leq \cos (x) \leq 1 \\
& -3 \leq 3 \cos (x) \leq 3 \\
& 2 \leq 3 \cos (x)+5 \leq 8 \\
& \frac{2}{x^{3}} \leq \frac{3 \cos (x)+5}{x^{3}} \leq \frac{8}{x^{3}}
\end{aligned}
$$

Since we are considering values of x such that $x \geq 2$ we see that all of the terms are positive.
The integrals $\int_{2}^{\infty} \frac{2}{x^{3}} d x$ and $\int_{2}^{\infty} \frac{8}{x^{3}} d x$ are both p-integrals with $p=3$. Both of these integrals will converge
Thus the comparison theorem says since $\int_{2}^{\infty} \frac{8}{x^{3}}$ converges then $\int_{2}^{\infty} \frac{3 \cos (x)+5}{x^{3}} d x$ will also converge.
6. We need to find a comparison that can be used to determine if the integral is convergent or divergent.

$$
\begin{aligned}
& -1 \leq \sin (x) \leq 1 \\
& 4 \leq 5+\sin (x) \leq 6 \\
& \frac{4}{x^{4}} \leq \frac{5+\sin (x)}{x^{4}} \leq \frac{6}{x^{4}}
\end{aligned}
$$

Since we are considering values of x such that $x \geq 2$ we see that all of the terms are positive.
The integrals $\int_{2}^{\infty} \frac{4}{x^{4}} d x$ and $\int_{2}^{\infty} \frac{6}{x^{4}} d x$ are both p-integrals with $p=4$. Both of these integrals will converge
Thus the comparison theorem says since $\int_{2}^{\infty} \frac{6}{x^{4}}$ converges then $\int_{2}^{\infty} \frac{5+\sin (x)}{x^{4}} d x$ will also converge.

To place a bound on the value of the integral we use the fact that we know $\int_{2}^{\infty} \frac{4}{x^{4}} d x \leq \int_{2}^{\infty} \frac{5+\sin (x)}{x^{4}} d x \leq \int_{2}^{\infty} \frac{6}{x^{4}} d x$. Now compute the two p-integrals.

- $\int_{2}^{\infty} \frac{4}{x^{4}} d x=\lim _{t \rightarrow \infty} \int_{2}^{t} \frac{4}{x^{4}} d x=\left.\lim _{t \rightarrow \infty} \frac{-4}{3 x^{3}}\right|_{2} ^{t}=\lim _{t \rightarrow \infty}\left(\frac{-4}{3 t^{3}}-\frac{-4}{3(2)^{3}}\right)=\frac{1}{6}$
- $\int_{2}^{\infty} \frac{6}{x^{4}} d x=\lim _{t \rightarrow \infty} \int_{2}^{t} \frac{6}{x^{4}} d x=\left.\lim _{t \rightarrow \infty} \frac{-6}{3 x^{3}}\right|_{2} ^{t}=\lim _{t \rightarrow \infty}\left(\frac{-6}{3 t^{3}}-\frac{-6}{3(2)^{3}}\right)=\frac{1}{4}$

Thus $\frac{1}{6} \leq \int_{2}^{\infty} \frac{5+\sin (x)}{x^{4}} d x \leq \frac{1}{4}$.
7. First we need to find an anti-derivative. This is done by doing partial fraction decomposition.

$$
\frac{24 x-4}{(x+2)\left(3 x^{2}+1\right)}=\frac{-4}{x+2}+\frac{12 x}{3 x^{2}+1}
$$

$$
\begin{aligned}
& \int_{1}^{\infty} \frac{24 x-4}{(x+2)\left(3 x^{2}+1\right)} d x=\lim _{t \rightarrow \infty} \int_{1}^{t} \frac{-4}{x+2}+\frac{12 x}{3 x^{2}+1} d x=\left.\lim _{t \rightarrow \infty}\left(-4 \ln |x+2|+2 \ln \left|3 x^{2}+2\right|\right)\right|_{1} ^{t} \\
& \quad=\lim _{t \rightarrow \infty}\left[\begin{array}{l}
-4 \ln |t+2|+2 \ln \left|3 t^{2}+2\right| \\
\text { L'Hopital case: } \infty-\infty
\end{array}-(-4 \ln |3|+2 \ln |5|)\right]
\end{aligned}
$$

Lets consider the L'Hopital case.
$\lim _{t \rightarrow \infty}\left(-4 \ln |t+2|+2 \ln \left|3 t^{2}+2\right|\right)=\lim _{t \rightarrow \infty} \ln \left(\frac{\left(3 t^{2}+2\right)^{2}}{(t+2)^{4}}\right)=\ln \left(\lim _{t \rightarrow \infty} \frac{9 t^{4}+6 t^{2}+1}{t^{4}+8 t^{3}+24 t^{2}+32 t+16}\right)$
$=\ln (9)$ after repeated use of L'Hopitals Rule on the fraction.

Solution:

$$
\int_{1}^{\infty} \frac{24 x-4}{(x+2)\left(3 x^{2}+1\right)} d x=\ln (9)+4 \ln (3)-2 \ln (5)
$$

8. First lets compute the anti-derivative: $\int \frac{1}{x^{p}} d x= \begin{cases}\ln |x| & \text { if } p=1 \\ \frac{x^{-p+1}}{-p+1} & \text { if } p \neq 1\end{cases}$

Now we see that there are two cases depending of the value of p .

Case 1: $P=1$
$\int_{1}^{\infty} \frac{1}{x} d x=\lim _{t \rightarrow \infty} \int_{1}^{t} \frac{1}{x} d x=\left.\lim _{t \rightarrow \infty} \ln (x)\right|_{1} ^{t}=\lim _{t \rightarrow \infty}(\ln (t)-\ln (1))=\infty$
Thus the integral diverges for $p=1$.

Case 2: $P \neq 1$
$\int_{1}^{\infty} \frac{1}{x^{p}} d x=\lim _{t \rightarrow \infty} \int_{1}^{t} \frac{1}{x^{p}} d x=\left.\lim _{t \rightarrow \infty} \frac{x^{-p+1}}{-p+1}\right|_{1} ^{t}=\lim _{t \rightarrow \infty}\left(\frac{t^{-p+1}}{-p+1}-\frac{1}{-p+1}\right)$
In order to finish computing the limit, we need to consider the term t^{-p+1}. Since we know that $P \neq 1$, we either have $-p+1>0$ or $-p+1<0$.

When $-p+1>0$ (equivalently $p<1$) we see that $\lim _{t \rightarrow \infty} t^{-p+1}=\infty$.
When $-p+1<0$ (equivalently $p-1>0$ or $p>1$) and we see that $\lim _{t \rightarrow \infty} t^{-p+1}=\lim _{t \rightarrow \infty} \frac{1}{t^{p-1}}=0$
This means that the limit is evaluated as the following.
$\int_{1}^{\infty} \frac{1}{x^{p}} d x=\lim _{t \rightarrow \infty}\left(\frac{t^{-p+1}}{-p+1}-\frac{1}{-p+1}\right)= \begin{cases}\infty & \text { if } p<1 \\ 0 & \text { if } p>1\end{cases}$

From the two cases, we see that the only time this integral has a value, i.e. converges, is when $p>1$.

