Section 11.1: Additional Problems Solutions

1. we can rewrite the sequence with all terms being fractions, after we notice the pattern.

$$
\left\{1, \frac{6}{4}, \frac{9}{5}, 2, \frac{15}{7}, \ldots\right\}=\left\{\frac{3}{3}, \frac{6}{4}, \frac{9}{5}, \frac{12}{6}, \frac{15}{7}, \ldots\right\}
$$

Notice the numerator is increasing by three each term so if n starts at one we can use the formula $3 n$ to generate the numbers in the numerator.
The denominator increases by one each term so if n starts at one we can use the formula $n+2$ to generate the numbers in the numerator. Another method of getting this formula is to notice the constant rate of change, which means the formula is a line. The first point is $n=1$ value $=$ 3 , i.e. $(\mathrm{n}, \mathrm{y})=(1,3)$, and the second point is $\mathrm{n}=2$ value is 4 . now find the equation of the line to get $y=n+2$.
$a_{n}=\frac{3 n}{n+2}$ with n starting at 1 .
2. we can rewrite the sequence with all terms being fractions, after we notice the pattern.
$\left\{\frac{-1}{3}, \frac{2}{5}, \frac{5}{7}, \frac{8}{9}, 1, \frac{14}{13}, \ldots\right\}=\left\{\frac{-1}{3}, \frac{2}{5}, \frac{5}{7}, \frac{8}{9}, \frac{11}{11}, \frac{14}{13}, \ldots\right\}$
Notice that numerator and the denominator both have a constant rate of change of the values. So use a line to find the formula in the numerator and denominator.

Numerator points (n, y) are $(1,-1)$ and $(2,2)$ gives the equation $y=3 n-4$
Denominator points (n, y) are $(1,3)$ and $(1,5)$ gives the equations $y=2 n+1$
$a_{n}=\frac{3 n-4}{2 n+1}$
3. $\lim _{n \rightarrow \infty} \arcsin \left(\frac{2 n}{4 n+5}\right)=\arcsin \left(\frac{1}{2}\right)=\frac{\pi}{6} \quad$ since $\lim _{n \rightarrow \infty} \frac{2 n}{4 n+5} \stackrel{L^{\prime} H}{=} \frac{1}{2}$

Thus the sequence converges and it will converge to the value $\frac{\pi}{6}$.
4. since $\frac{\pi+4}{e^{2}} \approx 0.9665<1$ we know that $\lim _{n \rightarrow \infty}\left[5-\left(\frac{\pi+4}{e^{2}}\right)^{n}\right]=5-0=5$

Thus the sequence converges and it will converge to the value 0 .
5. $\lim _{n \rightarrow \infty}\left[\frac{n^{2}}{2 n-1}-\frac{n^{2}}{2 n+1}\right]=\lim _{n \rightarrow \infty} \frac{n^{2}(2 n+1)-n^{2}(2 n-1)}{(2 n-1)(2 n+1)}=\lim _{n \rightarrow \infty} \frac{2 n^{2}}{4 n^{2}-1} \stackrel{L^{\prime} H}{=} \frac{2}{4}=\frac{1}{2}$

Thus the sequence converges and it will converge to the value $\frac{1}{2}$.
6. $\lim _{n \rightarrow \infty} \sqrt[n]{3^{2 n+5}}=\lim _{n \rightarrow \infty} 3^{(2 n+5) / n}=3^{2}=9 \quad$ since $\lim _{n \rightarrow \infty} \frac{2 n+5}{n} \stackrel{L^{\prime} H}{=} 2$

Thus the sequence converges and it will converge to the value 9 .
7. Since $\lim _{n \rightarrow \infty} a_{n}=7$ we know the sequence will converge to 7 and thus the sequence is bounded.

The sequence is embeded in the function $f(x)=7-\frac{4}{x^{2}}$ and $f^{\prime}(x)=\frac{8}{x^{3}}>0$ for $x>0$. Thus $f(x)$ is an increasing function for $x>0$.
Thus the sequence is both an increasing sequence for $x>0$ and the sequence is bounded.
8. Consider the function $f(x)=\frac{\sqrt{x-3}}{5 x+8}$. If this function is decreasing for $x \geq 3$ then the sequence, which is a part of this function will be decreasing.
$f^{\prime}(x)=\frac{(5 x+8) * \frac{1}{2}(x-3)^{-1 / 2}-5 * \sqrt{x-3}}{(5 x+8)^{2}}=\frac{(5 x+8) * \frac{1}{2}(x-3)^{-1 / 2}-5 * \sqrt{x-3}}{(5 x+8)^{2}} * \frac{2 \sqrt{x-3}}{2 \sqrt{x-3}}$
note: the blue fraction is a quick way to simplify the negative exponents in the fraction.
$f^{\prime}(x)=\frac{(5 x+8)-10 *(x-3)}{2(5 x+8)^{2} \sqrt{x-3}}=\frac{5 x+8-10 x+30}{2(5 x+8)^{2} \sqrt{x-3}}=\frac{38-5 x}{2(5 x+8)^{2} \sqrt{x-3}}$
Setting $f^{\prime}(x)=0$ and solving for x gives $x=\frac{38}{5}=7.6$. Now looking at a sign chart for the first derivative, we see that the first derivative is negative for $x>7.6$ and thus the function $f(x)$ is decreasing for $x \geq 8$.

9. $a_{n}=\frac{(-5)^{n}}{2^{3 n}}=\frac{(-1)^{n} 5^{n}}{\left(2^{3}\right)^{n}}=\frac{(-1)^{n} 5^{n}}{8^{n}}=(-1)^{n}\left(\frac{5}{8}\right)^{n}$. Since $\lim _{n \rightarrow \infty}\left(\frac{5}{8}\right)^{n}=0$, we know that this sequence will converge to 0 .
10. Since $\lim _{n \rightarrow \infty} \frac{n^{2}+1}{3 n^{3}+5} \stackrel{L^{\prime} H}{=} 0$ and $\lim _{n \rightarrow \infty} \frac{3 n}{5 n+7} \stackrel{L^{\prime} H}{=} \frac{3}{5}$
$\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty}\left(\frac{(-1)^{n}\left(n^{2}+1\right)}{3 n^{3}+5}+\frac{3 n}{5 n+7}\right)=0+\frac{3}{5}=\frac{3}{5}$
Thus the sequence converges and it converges to the value $\frac{3}{5}$
11. Since $\lim _{n \rightarrow \infty} \frac{2^{n}}{n^{2}} \stackrel{L^{\prime} H}{=} \lim _{n \rightarrow \infty} \frac{2^{n} \ln (2)}{2 n} \stackrel{L^{\prime} H}{=} \lim _{n \rightarrow \infty} \frac{2^{n}(\ln (2))^{2}}{2}=\infty$, this sequence will diverge.
12. Since $\left\{\frac{(-3)^{n}}{n!}\right\}=\left\{\frac{(-)^{n} 3^{n}}{n!}\right\}$ and the fact the terms of the sequence have alternating signs, we can apply the squeeze theorem.
$-b_{n}=\frac{-3^{n}}{n!} \leq \frac{(-)^{n} 3^{n}}{n!} \leq \frac{3^{n}}{n!}=b_{n}$
Now lets look at b_{n} for $n>3$ we get
$0<b_{n}=\overbrace{\frac{3}{1} * \frac{3}{2} * \frac{3}{3} * \underbrace{\frac{3}{4} \cdots \frac{3}{n-1}}_{\text {each fraction is }<1} * \frac{3}{n}}^{\mathrm{n} \text {-terms }}<\frac{3}{1} * \frac{3}{2} * \frac{3}{3} * \frac{3}{n}=\frac{27}{2 n}$
note: if you multiply a number, say J, by a positive fraction less than one, then the result will be smaller than J.

Since $\lim _{n \rightarrow \infty} \frac{27}{2 n}=0$ we get that b_{n} will converge to 0 . Also $-b_{n}$ will converge to 0 as $n \rightarrow \infty$.
Since b_{n} and $-b_{n}$ both converge to 0 , we know by the squeeze threorm that $\left\{\frac{(-3)^{n}}{n!}\right\}$ will converge to 0 .
13. Since the sequence is decreasing and bounded, we know that the sequence will converge. Thus we can assume that $\lim _{n \rightarrow \infty} a_{n}=L$. we also get that $\lim _{n \rightarrow \infty} a_{n+1}=L$.

$$
\begin{aligned}
\lim _{n \rightarrow \infty} a_{n+1} & =\lim _{n \rightarrow \infty} \frac{1}{3-a_{n}} \\
L & =\frac{1}{3-L} \\
L(3-L) & =1 \\
L^{2}-3 L+1 & =0
\end{aligned}
$$

By the quadratic formula we get that $L=\frac{3-\sqrt{5}}{2} \approx 0.382$ or $L=\frac{3+\sqrt{5}}{2} \approx 2.618$
Since the first term of the sequence is 2 and the sequence is decreasing, we see that the limit is $L=\frac{3-\sqrt{5}}{2}$
14. Since we are told to assume that the sequence converges., we have $\lim _{n \rightarrow \infty} a_{n}=L$ and $\lim _{n \rightarrow \infty} a_{n+1}=L$

$$
\begin{aligned}
\lim _{n \rightarrow \infty} a_{n+1} & =\lim _{n \rightarrow \infty} \frac{\left(a_{n}\right)^{2}+6}{4 a_{n}} \\
L & =\frac{L^{2}+6}{4 L} \\
4 L^{2} & =L^{2}+6 \\
3 L^{2} & =6 \\
L^{2} & =2
\end{aligned}
$$

so $L=-\sqrt{2}$ or $L=\sqrt{2}$. Since we were not told anything about increasing or decresing we need to think about the terms of the sequence. Notice with the formula, $a_{n+1}=\frac{\left(a_{n}\right)^{2}+6}{4 a_{n}}$, the numerator will always be positive and the sign of the denominator will depend on the sign of the value we plug in. Thus if we start with a negative value, then the next term will also be negative. Likewise, if we start with a positive value, then the next term will be positive.
Since $a_{1}=3$, which is positive, we know all terms of the sequence are positive and thus the sequence converges to $L=\sqrt{2}$

