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Section 11.5: Additional Problems Solutions
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2) Show that the series Z (—1)""'b,, where b, = — if n is odd and b, = —

— n n?
is even, is divergent. Why does the alternating series Test not apply?

First figure out what the series looks like.
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Now lets consider the following terms as a series.
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This series is a p-series with p = 2 and thus it converges.
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From section 11.2 we know if we have two convergent series, Z an and Z Cn,
n=1 n=1

(o]
then Z an + ¢, will also be convergent.
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So lets assume thatnz::l (—=1)" b, =1~ 2 + 3T e + T +...is acon-
vergent series.

By the above 11.2 information then
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Z (—1)"b, + nz:; n)2 will also be a convergent series.
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But
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It can be shown that Z 5 is a divergent series, using the limit compar-
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ison test with the harmonic series. Thus our assumption is incorrect.
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Z (1)1, =1 - 52 + 3T + s T e + --- is a divergent series.

n=1

Notice the alternating series does not apply since the b,, terms are not decreas-
ing.



