Section 11.5: Additional Problems Solutions

2) Show that the series $\sum_{n=1}^{\infty}(-1)^{n-1} b_{n}$, where $b_{n}=\frac{1}{n}$ if n is odd and $b_{n}=\frac{1}{n^{2}}$ is even, is divergent. Why does the alternating series Test not apply?

First figure out what the series looks like.
$\sum_{n=1}^{\infty}(-1)^{n-1} b_{n}=1-\frac{1}{2^{2}}+\frac{1}{3}-\frac{1}{4^{2}}+\frac{1}{5}-\frac{1}{6^{2}}+\cdots$
Now lets consider the following terms as a series.
$\frac{1}{2^{2}}+\frac{1}{4^{2}}+\frac{1}{6^{2}}+\frac{1}{8^{2}}+\cdots=\sum_{n=1}^{\infty} \frac{1}{(2 n)^{2}}=\sum_{n=1}^{\infty} \frac{1}{4 n^{2}}=\frac{1}{4} \sum_{n=1}^{\infty} \frac{1}{n^{2}}$
This series is a p-series with $p=2$ and thus it converges.
From section 11.2 we know if we have two convergent series, $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} c_{n}$, then $\sum_{n=1}^{\infty} a_{n}+c_{n}$ will also be convergent.

So lets $\underline{\text { assume }}$ that $\sum_{n=1}^{\infty}(-1)^{n-1} b_{n}=1-\frac{1}{2^{2}}+\frac{1}{3}-\frac{1}{4^{2}}+\frac{1}{5}-\frac{1}{6^{2}}+\cdots$ is a convergent series.

By the above 11.2 information then
$\sum_{n=1}^{\infty}(-1)^{n-1} b_{n}+\sum_{n=1}^{\infty} \frac{1}{(2 n)^{2}}$ will also be a convergent series.
But
$\sum_{n=1}^{\infty}(-1)^{n-1} b_{n}+\sum_{n=1}^{\infty} \frac{1}{(2 n)^{2}}=1+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+\cdots=\sum_{n=1}^{\infty} \frac{1}{2 n-1}$
It can be shown that $\sum_{n=1}^{\infty} \frac{1}{2 n-1}$ is a divergent series, using the limit comparison test with the harmonic series. Thus our assumption is incorrect.
$\sum_{n=1}^{\infty}(-1)^{n-1} b_{n}=1-\frac{1}{2^{2}}+\frac{1}{3}-\frac{1}{4^{2}}+\frac{1}{5}-\frac{1}{6^{2}}+\cdots$ is a divergent series.
Notice the alternating series does not apply since the b_{n} terms are not decreasing.

