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Section 11.5: Additional Problems Solutions

2) Show that the series
∞∑
n=1

(−1)n−1bn, where bn =
1

n
if n is odd and bn =

1

n2

is even, is divergent. Why does the alternating series Test not apply?

First figure out what the series looks like.
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Now lets consider the following terms as a series.
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This series is a p-series with p = 2 and thus it converges.

From section 11.2 we know if we have two convergent series,
∞∑
n=1

an and
∞∑
n=1

cn,

then
∞∑
n=1

an + cn will also be convergent.

So lets assume that
∞∑
n=1

(−1)n−1bn = 1 − 1
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vergent series.

By the above 11.2 information then
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(−1)n−1bn +
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(2n)2
will also be a convergent series.

But
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It can be shown that
∞∑
n=1

1

2n− 1
is a divergent series, using the limit compar-

ison test with the harmonic series. Thus our assumption is incorrect.
∞∑
n=1
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+ · · · is a divergent series.

Notice the alternating series does not apply since the bn terms are not decreas-
ing.


