1. (a) $C(9,5) C(14,1)+C(10,5) C(13,1)$
(b) $C(9,4) C(14,2)+C(4,2) C(19,4)-C(9,4) C(4,2)$
(c) $C(23,6)-[C(9,0) C(14,6)+C(9,1) C(14,5)]$
2. $\frac{17!}{8!2!6!}$
or $C(17,8) C(9,2) C(7,6) C(1,1)$
3. (a) $C(8,3) C(10,4) * 7$!
the two combinations pick the people for the picture. the $7!$ puts them in the row.
or $P(8,3) P(10,4) * C(7,3)$
The combination shuffles the location of the boys.
(b) $\frac{8 * 10 * 7 * 9 * 6 * 8 * 5+10 * 8 * 9 * 7 * 8 * 6 * 5}{P(18,7)}$
4. This is not binomial since the problem says that the only the first three customers pay with a credit card. This problem is looking at a single branch of the tree.
$(0.18)^{3}(0.82)^{4}$
5. Answer will vary.

Let X be the distance that a baseball can be hit.
6. $\mathrm{n}=40, \mathrm{p}=0.12$
$\mathrm{r}=0,1,2, \ldots, 7$
$\operatorname{binomcdf}(40,0.12,7)=0.90037$
7. mode $=3,10$

Median $=8.5$
Mean $=7.6$
population standard deviation $=3.9038$
sample standard deviation $=3.9536$
population variance $=15.23965$
8. use Chebyshev's inequality
solve for k :
$292=220+k * 45$
$72=45 k$
$k=1.6$
$P(148 \leq X \leq 292) \geq 1-\frac{1}{1.6^{2}}=0.609375$
9. (a) normalcdf($19,1 \mathrm{E} 99,16,8)=0.3538$
(b) 0
(c) normalcdf $(12,21,16,8)=0.4255$
(d) $\mathrm{n}=300, \mathrm{p}=0.4255$,
$\mathrm{r}=111,112, \ldots, 130$
$\operatorname{binomcdf}(300,0.4255,130)-\operatorname{binomcdf}(300,0.4255,110)$
10. $\mu-1.4 \sigma<x<\mu+1.4 \sigma$ $48.8<x<71.2$
11. (a) $\mathrm{x}=1,2,3, \ldots, 16$
(b) $\frac{15}{30} * \frac{15}{29}$
12. inverse norm needs the area to the left of the cutoff. invnorm $(0.82,14,1.6)=15.4646$ minutes
13. (a) Draw a tree to get the probabilities.

x	-2	-1	2	4
prob	$\frac{1}{12}+\frac{1}{2}=\frac{7}{12}$	$\frac{1}{12}$	$\frac{1}{12}$	$\frac{1}{4}$

(b) -0.83333
(c) $-0.83333 * 10,000=-833.33$
loss of $\$ 833.33$

