Sample problems for Test 3

1. Find the following indefinite integrals:

(a)
$$\int \frac{1}{\sqrt{x}} e^{\sqrt{x}} dx$$

(b)
$$\int \frac{x^3 - 3}{x^4 - 12x + 3} dx$$

(c)
$$\int \frac{(\ln x)^2}{x} dx$$

$$(d) \int \frac{x}{(5-2x^2)^5} \, dx$$

(e)
$$\int \frac{x}{\sqrt{3-x}} dx$$

(f)
$$\int e^{2x-1} dx$$

2. The weekly marginal revenue from the sale of x pairs of tennis shoes is given by

$$R'(x) = 40 - 0.002x + \frac{200}{x+1}, \quad R(0) = 0,$$

where R(x) is revenue in dollars. Find the revenue function R(x). Find the revenue from the sale of 1000 pairs of shoes.

- 3. Use L_6 and R_6 to approximate $\int_2^5 (0.25x^2 4)dx$.
- 4. Evaluate each of the definite integrals:

(a)
$$\int_{0}^{A} 32(x^2+1)^7 x \, dx \ (A>0)$$

(b)
$$\int_{B}^{2} \left(5x - 4 \frac{x^2}{\sqrt[4]{x^3}} \right) dx$$
, $(0 < B < 2)$

- 5. Find the average value of the function $f(x) = 4x 3x^2$ over the interval [-2, 2].
- 6. Find the area of the region bounded by:

(a)
$$y = 3 - x^2$$
, $y = 2x^2 - 4x$

(b)
$$y = x^3, y = 4x$$

(c)
$$y = -x^2 - 2x$$
, $y = 0$, $x = -2$, $x = 1$.

7. Find the consumers' surplus and producers' surplus at the equilibrium price level for the given price-demand and price-supply equations.

$$p = D(x) = 70 - 0.2x$$

$$p = S(x) = 13 + 0.0012x^{2}$$

Round all values to the nearest integer.

8. Let
$$f(x,y) = 2x - 3y + 14$$
 and $g(x,y) = \frac{10}{x^2 + 4y}$. Find $f(2,-3) - 4g(-1,2)$.

9. Weston Publishing publishes a deluxe edition and a standard edition of its English language dictionary. Weston's management estimates that the number of deluxe editions demanded is x copies/day and the number of standard editions demanded is y copies/day when the unit prices are

$$p = 20 - 0.005x - 0.001y$$
$$q = 15 - 0.001x - 0.003y$$

dollars, respectively. Find the daily total revenue function R(x,y). Evaluate R(7,3).

- 10. Find the cross-section of the surface $z = 10x + 4xy + 15y^2 6x^2 + 5$ produced by the cutting it with the planes x = 4, y = 2.
- 11. Find f_x and f_y for the functions:

(a)
$$f(x,y) = \frac{2xy}{1 + x^2y^2}$$

(b)
$$f(x,y) = \sqrt{2x - y^2}$$

(c)
$$f(x,y) = xe^{x\sqrt{y}}$$

- 12. Find f_x , f_y , f_{xx} , f_{xy} , and f_{yy} for the function $f(x,y) = -4x^3y^5 + 9x^6y^2$.
- 13. Find the local extrema for the function $f(x,y) = x^3 3xy^2 + 6y^2$.