A.8. Some special functions and graphing techniques.

Polynomial function. A polynomial function of degree n is a function of the form

$$
f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0} \quad\left(a_{n} \neq 0\right)
$$

where $a_{n}, a_{n-1}, \ldots, a_{1}, a_{0}$ are constants and n is a nonnegative integer. The domain is all real numbers. The coefficient a_{n} is called the leading coefficient.
Examples of polynomial functions:

$$
\begin{aligned}
& n=0: f(x)=a_{0} \quad \text { constant } \\
& n=1: f(x)=a_{1} x+a_{0} \quad \text { linear } \\
& n=2: f(x)=a_{2} x^{2}+a_{1} x+a_{0} \quad \text { quadratic }
\end{aligned}
$$

Example 1. Which of the following are polynomials? For each polynomial determine its degree and circle its leading coefficient.

1. $f(x)=x^{5}+x^{2}-6-x^{11} \quad \|^{\text {th }}$ degree
2. $g(x)=5 \sqrt{x}+4 x-2=5 x^{1 / 2}+4 x-2$ not a polynomial
3. $h(x)=2 x^{4}-x^{2}+x \quad 4^{\text {th }}$ degree
4. $r(x)=x^{2}+x^{-2}$ not a polynomial

Rational function. A rational function has the form

$$
R(x)=\frac{a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}}{b_{m} x^{m}+b_{m-1} x^{m-1}+\ldots+b_{1} x+b_{0}}=\frac{\text { polynomial }}{\text { polynomial }}
$$

The domain of $R(x)$ is all real numbers for which $b_{m} x^{m}+b_{m-1} x^{m-1}+\ldots+b_{1} x+b_{0} \neq 0$.
Example 2. Find the domain of the following functions.

1. $\left.f(x)=\frac{x+1}{x+3} \begin{array}{rl}x+3 \neq 0 \\ x \neq-3\end{array}\right]$
2. $g(x)=\frac{x+1}{x^{2}-4}$

$$
\begin{aligned}
& x^{2}-4 \neq 0 \\
& (x-2)(x+2) \neq 0 \\
& x \neq 2, x \pm-2
\end{aligned}
$$

Domain: $(-\infty,-2) \cup(-2,2) \cup(2, \infty)$
3. $f(x)=\frac{x^{3}+1}{x^{2}-x-6}$

$$
x^{2}-x-6 \neq 0
$$

$$
(x+2)(x-3) \neq 0
$$

$x \neq-2, x \neq 3$

$$
\text { Domain: }(-\infty,-2) \cup(-2,3) \cup(3, \infty)
$$

Power function. A power function is a function of the form

$$
f(x)=k x^{r}
$$

where k and r are any real numbers.
Examples of power functions.

1. $r=n, n$ is a positive integer. Then $f(x)$ is a polynomial with only one term.

2. $r=\frac{1}{n}, n$ is a positive integer. Then $f(x)=x^{1 / n}=\sqrt[n]{x}$ is a root function.
$f(x)=\sqrt[2]{x}$

Domain is

Domain is $(-\infty, \infty)$
3. $r=-1$. Then $f(x)=x^{-1}=\frac{1}{x}$ is a reciprocal function.

Its graph is a hyperbola with coordinate axes as its asymptotes.

NOTE: your calculator may graph power functions incorrectly when $r=\frac{m}{n}$. Instead of entering $y=x^{m / n}, \operatorname{try} y=\left(x^{m}\right)^{1 / n}$ or $y=\left(x^{1 / n}\right)^{m}$

Graphing technics
Vertical shift. For $k>0$, the graph of $y=f(x)+k$ is the graph of $y=f(x)$ shifted upward by k units, while the graph of $y=f(x)-k$ is the graph of $y=f(x)$ shifted downward by k units.
Example 3. Graph $y=x^{2}, y=x^{2}+1$, and $y=x^{2}-2$ on the same graph.

Horizontal shift. For $c>0$, the graph of $y=f(x-c)$ is the graph of $y=f(x)$ shifted to the right by c units, while the graph of $y=f(x+c)$ is the graph of $y=f(x)$ shifted to the left by c units.
Example 4. Graph $y=x^{2}, y=(x-2)^{2}$, and $y=(x+1)^{2}$ on the same graph.

Reflection. The graph of $y=-f(x)$ is the reflection of the graph $y=f(x)$ in the x-axis. Example 5. Graph $y=x^{2}$ and $y=-x^{2}$ on the same graph.

Expansion and Contraction. For $a>0$, the graph of $y=a f(x)$ is an expansion (vertically) of the graph of $y=f(x)$ if $a>1$, and a contraction (vertically) of the graph of $y=f(x)$ if $0<a<1$.
Example 6. Graph $y=x^{2}, y=2 x^{2}$, and $y=0.5 x^{2}$ on the same graph.

Example 7. How is the graph of $y=-4-|x+1|$ found from the graph of $y=|x|$?

- move left I unit
- reflect over x-axis
- move down 4 units

Example 8. How is the graph of $y=1+\sqrt{x-1}$ found from the graph of $y=\sqrt{x}$?

NOTE: the order of transformations is important. Perform the transformations in the order you would perform the mathematical calculations for each value of x when determining the resulting y-value.

