1. Find the domain of the function

$$
f(x)= \begin{cases}x+4, & \text { if } x>3 \\ \frac{x}{\sqrt{x+2}}, & \text { if } x \leq 3\end{cases}
$$

2. Which of the following are polynomials? For each polynomial determine its degree and circle its leading coefficient.
(a) $f(x)=x^{5}+x^{2}-6-x^{11}$
(b) $g(x)=5 \sqrt{x}+4 x-2$
(c) $h(x)=2 x^{4}-x^{2}+x$
(d) $r(x)=x^{2}+x^{-2}$
3. Solve for x

$$
7^{x^{2}}=7^{2 x+3}
$$

4. Amanda would like to remodel her kitchen in 4 years. How much should she invest now at 7% compounded monthly to have $\$ 15,000$ four years from now? Round your answer to the nearest cent.
5. Solve for x

$$
\log _{5} x+\log _{5}(x+3)=\log _{5} 10
$$

6. Write as a single logarithm
7. The financial department of a company that produces pens obtains the following pricedemand equation

$$
p=35-0.34 x
$$

where p is the wholesale price in dollars per pen at which x pens are sold. The fixed costs for the company is $\$ 200$ and the variable costs is $\$ 4.50$ per pen. How many pens should be produced by the company to maximize the profit? Round the answer to the nearest integer.
8. A company that produces and sells T-shirts established the price-demand function $p(x)=$ $21-0.1 x$, where $p(x)$ is the price per T-shirt at which x T-shirts can be sold. Suppose that the company must produce at least 50 shirts and its cost equation is $C(x)=2 x+250$. How many T-shirts must the company produce to break-even? Round your answer to the nearest T-shirt.
9. The quantity demanded of a certain brand of computers is $300 /$ wk when unit price is $\$ 450$. For each decrease in unit price of $\$ 30$, the quantity demanded increases by 100 units. The company will not supply any computers if the unit price is $\$ 250$ or lower. However, they will supply 375 computers if unit price is $\$ 325$. Find the equaibrium price and the equilibrium quantity.
10. Suppose $\$ 29,000$ is deposited into an account paying 7.5% annual interest. How much will be in the account after 5 years if the account is compounded continuously?
11. Express the given quatities as a single logarithm:
(a) $\log _{2} x+5 \log _{2}(x+1)+\frac{1}{2} \log _{2}(x-1)$
(b) $2 \ln 4-\ln 2$
12. How long will it take for the amount in an account to triple if the money is compounded continuously at an annual interest rate of 4.7% ?
13. Evaluate the limit
(a) $\lim _{x \rightarrow 5} \frac{x^{2}-25}{x^{2}+x-30}$
(b) $\lim _{h \rightarrow 0} \frac{\sqrt{a+h}-\sqrt{a}}{h}, a \geq 0$.
(c) $\lim _{x \rightarrow \infty} \frac{2 x^{3}+1}{4-x-x^{3}}$
14. Find the vertical and horizontal asymptotes of the curve $y=\frac{x^{2}+4}{3 x^{2}-3}$.
15. Find all points of discontinuity for the function

$$
f(x)= \begin{cases}x^{2}+1 & , \quad \text { if } x<2 \\ x+2 & , \quad \text { if } x \geq 2\end{cases}
$$

16. The displacement of an object moving in a straight line is given by $s(t)=1+2 t+t^{2} / 4$ (t is in seconds).
(a) Find the average velocity when t changes from $t=1$ to $t=2$.
(b) Find the velocity of the object when $t=1$.
17. Find the equation of the tangent line to the curve $y=2 x^{2}-3$ at the point $(2,5)$.
