1. Let

$$p = 25 - 0.01x$$
 and $C(x) = 2x + 9000$

where $0 \le x \le 2500$, be the price-demand equation and cost function, respectively, for the manufacture of umbrellas.

- (a) Find the exact cost of producing the 31st umbrella.
- (b) Use the marginal cost to approximate the cost of producing the 31st umbrella.
- 2. Find the equation of the tangent line to the graph of the function $f(x) = \ln(1 x^2 + 2x^4)$ at the point where x = 1.
- 3. Find the value(s) of x where the tangent line to the graph of the function $y = 5e^{x^2-4x+1}$ is horizontal.
- 4. Find each derivative

(a)
$$\frac{d}{dx} \log_3(\sqrt[4]{4x^3 + 5x + 7})$$

(b) $\frac{d}{dx} 8^{1-2x^3}$
(c) $\frac{d}{dx} \frac{3x^2}{(x^2 + 5)^3}$
(d) $\frac{d}{dx} [(x^2 + x - 3)e^{2x+3}]$

5. Given the price-demand equation

$$0.02x + p = 60$$

- (a) Find the elasticity of demand E(p).
- (b) For which values of p is the revenue maximized? Find the maximum revenue.
- (c) If p = \$10 and the price is increased by 5%, what is the approximate change in demand?
- (d) If p = \$40 and the price is decreased, will revenue increase or decrease?
- 6. Find f''(x) for the functions

(a)
$$f(x) = x^2(2x^3 - 5)^4$$

(b) $f(x) = \frac{2}{x} - \frac{6}{x^3}$

7. Find the limit

(a)
$$\lim_{x \to \infty} (x - x^3)$$

(b) $\lim_{x \to -\infty} (x - x^3)$

(c)
$$\lim_{x \to -\infty} \frac{x^3 - 1}{2x^4 + 1}$$

(d)
$$\lim_{x \to \infty} \frac{x^4 - 1}{1 - x^3}$$

(e)
$$\lim_{x \to \infty} \frac{x^4 - 2x^2 + 3}{1 - x^4}$$

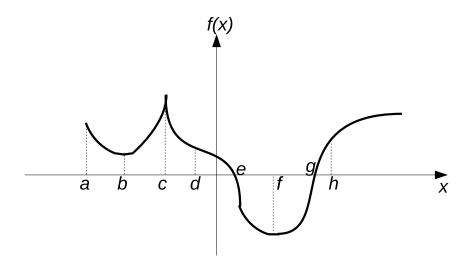
(f)
$$\lim_{x \to -\infty} \frac{e^{-2x} + 4}{3 - 2e^{-2x}}$$

8. Find the horizontal asymptotes of the function

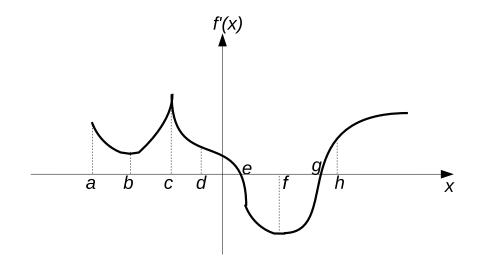
(a)
$$f(x) = \frac{x^4 + 3x}{2 - 6x^4}$$

(b) $f(x) = \frac{x}{x^2 + 4}$

- 9. Find the local extrema and the inflection points for the function $f(x) = ax^3 + bx^2 + cx + d$, where a, b, c, and d are arbitrary constants.
- 10. Given the graph of the function y = f(x).



- (a) Find the intervals on which f'(x) > 0.
- (b) Find the intervals on which f'(x) < 0.
- (c) Find x-coordinates of the points where f'(x) = 0.
- (d) Find the intervals on which f''(x) > 0.
- (e) Find the intervals on which f''(x) < 0.
- (f) Find x-coordinates of the points where f''(x) = 0.
- 11. Given the graph of the derivative f'(x) of the function f(x).



- (a) Find the intervals on which f(x) is increasing/decreasing.
- (b) Find x-coordinates of the critical values for f(x).
- (c) Find the intervals on which f(x) is conveave up/concave down.
- (d) Find *x*-coordinates of the inflection points.

12. Given the function $f(x) = \frac{1}{4}x^4 - 4x$.

- (a) Find critical values of f(x).
- (b) Find intervals on which f(x) is increasing and decreasing.
- (c) Find local extrema for f(x).
- (d) Find intervals on which f(x) is concave upward and concave downward.
- (e) Find all inflection points of f(x).
- 13. Find the absolute maximum and absolute minimum for the function $f(x) = \sqrt{9 x^2}$ on the interval [-1, 2].
- 14. Find the absolute maximum and minimum for the function $f(x) = \frac{x^2 1}{x^2 + 1}$.
- 15. A box with a square base and open top must have a volume of 32000 cm^3 . Find the dimensions of the box that minimize the amount of material used.