Sample problems for Test 3

1. Let $\int_{1}^{5} f(x) d x=2, \int_{1}^{3} g(x) d x=-1$, and $\int_{3}^{5} g(x) d x=4$. Find $\int_{5}^{1}(4 g(x)-3 f(x)) d x$.
2. Calculate $2 \int_{a}^{c} f(x) d x-\int_{0}^{e} f(x) d x$ by refering to the figure with the indicated areas.

3. Find the following indefinite integrals:
(a) $\int \frac{1}{\sqrt{x}} e^{\sqrt{x}} d x$
(b) $\int \frac{x^{3}-3}{x^{4}-12 x+3} d x$
(c) $\int \frac{(\ln x)^{2}}{x} d x$
(d) $\int \frac{x}{\left(5-2 x^{2}\right)^{5}} d x$
(e) $\int \frac{x}{\sqrt{3-x}} d x$
(f) $\int e^{2 x-1} d x$
4. The weekly marginal revenue from the sale of x pairs of tennis shoes is given by

$$
R^{\prime}(x)=40-0.002 x+\frac{200}{x+1}, \quad R(0)=0
$$

where $R(x)$ is revenue in dollars. Find the revenue function $R(x)$. Find the revenue from the sale of 1000 pairs of shoes.
5. Use L_{6} and R_{6} to approximate $\int_{2}^{5}\left(0.25 x^{2}-4\right) d x$.
6. Evaluate each of the definite integrals:
(a) $\int_{0}^{A} 32\left(x^{2}+1\right)^{7} x d x \quad(A>0)$
(b) $\int_{B}^{2}\left(5 x-4 \frac{x^{2}}{\sqrt[4]{x^{3}}}\right) d x, \quad(0<B<2)$
7. Find the average value of the function $f(x)=4 x-3 x^{2}$ over the interval $[-2,2]$.
8. Find the area of the region bounded by:
(a) $y=3-x^{2}, y=2 x^{2}-4 x$
(b) $y=x^{3}, y=4 x$
(c) $y=-x^{2}-2 x, y=0, x=-2, x=1$.
9. Find the consumers' surplus and producers' surplus at the equilibrium price level for the given price-demand and price-supply equations.

$$
\begin{aligned}
& p=D(x)=70-0.2 x \\
& p=S(x)=13+0.0012 x^{2}
\end{aligned}
$$

Round all values to the nearest integer.
10. Let $f(x, y)=2 x-3 y+14$ and $g(x, y)=\frac{10}{x^{2}+4 y}$. Find $f(2,-3)-4 g(-1,2)$.
11. Weston Publishing publishes a deluxe edition and a standard edition of its English language dictionary. Weston's management estimates that the number of deluxe editions demanded is x copies/day and the number of standard editions demanded is y copies/day when the unit prices are

$$
\begin{aligned}
& p=20-0.005 x-0.001 y \\
& q=15-0.001 x-0.003 y
\end{aligned}
$$

dollars, respectively. Find the daily total revenue function $R(x, y)$. Evaluate $R(7,3)$.
12. Find f_{x} and f_{y} for the functions:
(a) $f(x, y)=\frac{2 x y}{1+x^{2} y^{2}}$
(b) $f(x, y)=\sqrt{2 x-y^{2}}$
(c) $f(x, y)=x e^{x \sqrt{y}}$
13. Find $f_{x}, f_{y}, f_{x x}, f_{x y}$, and $f_{y y}$ for the function $f(x, y)=-4 x^{3} y^{5}+9 x^{6} y^{2}$.

