Definition. The derivative of a function f at a number a, denoted by $f^{\prime}(a)$, is

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
$$

if the limit exist.
Example 1. Find $f^{\prime}(a)$ if $f(x)=\sqrt{x}, a>0 . \quad[f(x)=\sqrt{x}, f(a)=\sqrt{a}] \quad(a-b)(a+b)=a^{2}-b^{2}$

$$
\begin{aligned}
& f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}=\lim _{x \rightarrow a} \frac{\sqrt{x}-\sqrt{a}}{x-a}=\left|\frac{0}{0}\right|=\lim _{x \rightarrow a} \frac{(\sqrt{x}-\sqrt{a})(\sqrt{x}+\sqrt{a})}{(x-a)(\sqrt{x}+\sqrt{a})} \\
&=\lim _{x \rightarrow a} \frac{(\sqrt{x})^{2}-(\sqrt{a})^{2}}{(x-a) \sqrt{x}+\sqrt{a})}=\lim _{x \rightarrow a} \frac{x-a}{(x-a)(\sqrt{x}+\sqrt{a})} \\
&=\lim _{x \rightarrow a} \frac{1}{\sqrt{x}+\sqrt{a}}=\frac{1}{\sqrt{a}+\sqrt{a}}=\frac{1}{2 \sqrt{a}}
\end{aligned}
$$

Geometric interpretation of the derivative. $f^{\prime}(a)$ is the slope of the tangent line to $y=f(x)$ at the point $(a, f(a))$.
Example 2. Find an equation of the tangent line to $f(x)=\sqrt{x}$ at the point where $x=9$.

$$
\begin{gathered}
\text { Equation of the tangent line: } y-y_{0}=m(x-\underbrace{}_{a}) \quad \begin{array}{l}
f^{\prime}(a)=\frac{1}{2 \sqrt{a}} \\
f(x)=\sqrt{x} \\
y_{0}=f(9)=\sqrt{9}=3 \\
\text { Slape of tangent line } m=f^{\prime}(9)=\frac{1}{2 \sqrt{9}}=\frac{1}{6} \\
y-3=\frac{1}{6}(x-9) \\
y=3+\frac{1}{6} x-\frac{9}{6} \\
y=\frac{1}{6} x+\frac{3}{2}
\end{array}
\end{gathered}
$$

Title : Sep 22-1:21 PM (Page 1 of 6)

Other interpretations of the derivative.

- $f^{\prime}(a)$ is the instanteneous rate of change of $y=f(x)$ with respect to x when $x=a$.
- if $s=f(t)$ is the position function of a particle that moves along a straight line, then $f^{\prime}(a)$ is the velocity of the particle at time $t=a$

$$
\begin{aligned}
& \text { A function } \\
& \text { is called the derivative of } f .
\end{aligned}
$$

Definition. A function f is differentiable at a if $f^{\prime}(a)$ exists. It is differentiable on an pen interval (a, b) if it is differentiable at every number in the interval
Example 3. Where is the function $f(x)=|x-2|$ differentiable?

$|x-2|= \begin{cases}x-2, & \text { if } x-2 \geqslant 0\end{cases}$
$|x-2|=\left\{\begin{array}{l}-(x-2), \text { if } x-2<0\end{array}\right.$
$\lim _{x \rightarrow 2^{+}} \frac{f(x)-f(2)}{x-2}=\lim _{x \rightarrow 2^{+}} \frac{x-2-0}{x-2}=1$ $\lim _{x-2^{-}} \frac{f(x)-f(2)}{x-2}=\lim _{x \rightarrow 2^{-}} \frac{-(x-2)-0}{x-2}=-1$
Example 3!. Find the derivative of $f(x)=x^{2}$ using the limit
definition
of the derivative.
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$ $f(x)=x^{2}$
$=\lim _{h \rightarrow 0} \frac{(x+h)^{2}-x^{2}}{h}$
$=\lim _{h \rightarrow 0} \frac{x^{2}+2 x h+h^{2}-x^{2}}{h}$
$\begin{aligned} &=\lim _{h \rightarrow 0} \frac{2 x h+h^{2}}{h}= \lim _{h \rightarrow 0} \frac{h(2 x+h)}{h}=\lim _{h \rightarrow 0}(2 x+h)=2 x \\ &\left.\left(x^{2}\right)^{\prime}=2 x \sqrt{(x)}\right)^{\prime}=\frac{1}{2 \sqrt{x}}\end{aligned}$

Title : Sep 22-1:22 PM (Page 3 of 6)

Theorem. If f is differentiable at a, then f is continuous at a
When is the function not differentiable at $x=a$?

- f has a "corner" or "kink" at a

$f^{\prime}(a) D N E$
- f is discontinuous at a
- the curve $y=f(x)$ has a vertical tangent line at $x=a$

Besides being able to find the function $f(x)$ from the function $f(x)$, you can also determin the graph of $f(x)$ from the graph of $f(x)$.
Things to look for when sketching $f(x)$ from the given graph of $f(x)$:

- Values of slopes of tangent lines to $f(x)$
- Points where $f(x)$ has horizontal tangentrope of the tangent line =0)
- Intervals where $f(x)$ is increasing or decreasing

$$
\begin{aligned}
& f^{\prime}(x)>0 \text { whenever } f(x) \text { is increasing } \\
& f^{\prime}(x)<0 \text { whenever } f(x) \text { is decreasing }
\end{aligned}
$$

- Places where $f(x)$ is leveling off

Example 4. Given the graph of $f(x)$ below, sketch the graph of $f^{\prime}(x)$.

Title : Sep 22-1:25 PM (Page 5 of 6)

Table of derivatives.

1. $(c)^{\prime}=0, e$ is a constant
2. $(x)^{\prime}=1$
3. $\left(x^{2}\right)^{\prime}=2 x$
4. $\left(x^{3}\right)^{\prime}=3 x^{2}$
5. $\left(x^{n}\right)^{\prime}=n x^{n-1}$
6. $(\sqrt{x})^{\prime}=\frac{1}{2 \sqrt{x}}$
7. $\left(\frac{1}{x}\right)^{r}=-\frac{1}{x^{2}}$
$(a f(x) \pm b g(x))^{\prime}=a f^{\prime}(x) \pm b g^{\prime}(x)$
Examples.

$$
\begin{aligned}
& \left(x^{2}+4 x+2-\frac{1}{x}\right)^{\prime}=\left(x^{2}\right)^{\prime}+(4 x)^{\prime}+(2)^{\prime}-\left(\frac{1}{x}\right)^{\prime} \\
& =2 x+4+\frac{1}{x^{2}} \quad\left(\frac{1}{x}\right)^{\prime}=-\frac{1}{x^{2}}
\end{aligned}
$$

