Solutions for the sample problems for the Final

1. How many CDs would a record company have to make and sell to break even if the fixed costs are $18000, variable costs are $5.20 per CD, and the CDs are sold to retailers for $7.60 each?

SOLUTION. The cost function is \(C(x) = 18000 + 5.2x \), the revenue function is \(R(x) = 7.6x \). The company breaks even if \(R(x) = C(x) \)

\[
18000 + 5.2x = 7.6x \\
x = \frac{18000}{7.6 - 5.2} = 7500
\]

2. Trunsville Utilities uses the following rates to compute the monthly cost of natural gas for residential customers. Write a piecewise definition for the cost of consuming \(x \) CCF (cubic hundred feet) of natural gas.

<table>
<thead>
<tr>
<th>Charges per month</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0.7675 per CCF for the first 50 CCF</td>
</tr>
<tr>
<td>$0.6400 per CCF for the next 150 CCF</td>
</tr>
<tr>
<td>$0.6130 per CCF for all over 200 CCF</td>
</tr>
</tbody>
</table>

SOLUTION. If \(0 \leq x \leq 50 \), then \(C(x) = 0.7675x \). Note, that \(C(50) = (50)(0.7675) = 38.375 \).

If \(50 \leq x \leq 200 \), then \(C(x) = 38.375 + 0.64(x - 50) = 6.375 + 0.64x \). \(C(200) = 6.375 + (0.64)(200) = 134.375 \)

If \(x > 200 \), then \(C(x) = 134.375 + 0.613(x - 200) = 11.775 + 0.613x \).

Thus\[
C(x) = \begin{cases}
0.7675x, & \text{if } 0 \leq x \leq 50 \\
6.375 + 0.64x, & \text{if } 50 \leq x \leq 200 \\
11.775 + 0.613x, & \text{if } x > 200
\end{cases}
\]

3. Find the domain of the function

\[
f(x) = \begin{cases}
\sqrt{x-5}, & \text{if } 5 \leq x \leq 10 \\
\frac{1}{2x+5}, & \text{if } 10 < x \leq 20 \\
5x, & \text{if } x > 20
\end{cases}
\]

SOLUTION. \[
x - 5 \geq 0 \\
x \geq 5
\]

and \(2x + 5 \neq 0 \) or \(x \neq -2.5 \). Since \(-2.5 < 10\), the domain of \(f \) is \([5, \infty)\).
4. The revenue and cost functions for a particular product are given below. The cost and revenue are given in millions of dollars, and x represents the number of units (in thousands).

$$R(x) = -64x^2 + 4400x$$
$$C(x) = 250x + 5200$$

At what production level(s), rounded to the nearest whole unit, will the company break even on this product?

SOLUTION. The company breaks even if $R(x) = C(x)$.

$$-64x^2 + 4400x = 250x + 5200$$
$$x_1 \approx 1, x_2 \approx 64$$

5. Solve the following equations for x:

(a) $2^{6x} = 8^{x^2+1}$

$$2^{6x} = 8^{x^2+1}$$
$$2^{6x} = (2^3)^{x^2+1}$$
$$2^{6x} = 2^{3x^2+3}$$
$$6x = 3x^2 + 3$$
$$2x = x^2 + 1$$
$$x^2 - 2x + 1 = 0$$
$$(x - 1)^2 = 0$$
$$x = 1$$

(b) $(5 - x)^5 = (2x - 1)^5$

$$(5 - x)^5 = (2x - 1)^5$$
$$5 - x = 2x - 1$$
$$3x = 6$$
$$x = 2$$

(c) $5^x = 14$

$$5^x = 14$$
$$\ln(5^x) = \ln(14)$$
$$x \ln 5 = \ln 14$$
$$x = \frac{\ln 14}{\ln 5} \approx 1.64$$

(d) $\log_2(x + 2) + \log_2(2) = \log_221$

$$\log_2(x + 2) + \log_2(2) = \log_221$$
$$\log_2(2(x + 2)) = \log_221$$
$$2(x + 2) = 21$$
$$x = \frac{21 - 4}{2} = 8.5$$

(e) $\log_4x = 3$

$$\log_4x = 3$$
$$x = 4^3 = 64$$
6. Suppose that $2500 is invested at 7% compounded quarterly. How much money will be
in the account in 5 years?

SOLUTION. A=$3536.95 (HINT: use TVM Solver for \(N = 4 \times 5 \), \(I=7 \), \(PV=2500 \), \(P/Y=4 \) and solve for \(FV \)).

7. In its first 10 years the Gabelli Growth Fund produced an average annual return of 21.36%.
Assume that money invested in this fund continues to earn 21.36% compounded annually.
How long will it take money invested in this fund to double?

SOLUTION. \(t = 3.58 \approx 4 \) (years) (HINT: use TVM Solver for \(I=21.36 \), \(PV=1 \), \(FV=-2 \), \(P/Y=1 \) and solve for \(N \)).

8. Evaluate each limit:

(a) \(\lim_{x \to 2} \frac{x^2 - 3x + 2}{x^2 + x - 6} = \lim_{x \to 2} \frac{(x - 2)(x - 1)}{(x - 2)(x + 3)} = \lim_{x \to 2} \frac{x - 1}{x + 3} = \frac{2 - 1}{2 + 3} = \frac{1}{5} \)

(b) \(\lim_{x \to \infty} \frac{2x^3 + x^2 + 5}{x - x^3} = \lim_{x \to \infty} \frac{2x^3}{x - x^3} = \lim_{x \to \infty} \frac{2}{-1} = -2 \)

(c) \(\lim_{x \to 1^-} \frac{|x - 1|}{x - 1} \)

Since

\(|x - 1| = \begin{cases} x - 1, & \text{if } x \geq 1 \\ -(x - 1), & \text{if } x < 1 \end{cases} \)

then

\(\lim_{x \to 1^-} \frac{|x - 1|}{x - 1} = \lim_{x \to 1^-} \frac{-(x - 1)}{x - 1} = -1. \)

9. Determine where the function

\(f(x) = \begin{cases} 1 + x, & \text{if } x \leq 2 \\ 6 - x, & \text{if } x > 2 \end{cases} \)

is continuous.

SOLUTION. If \(x < 2 \), then \(f(x) = 1 + x \) and \(f \) is continuous on its domain \((-\infty, 2)\).
If \(x > 2 \) then \(f(x) = 6 - x \) and \(f \) is continuous on its domain \((2, \infty)\).

\(\lim_{x \to 2^+} f(x) = \lim_{x \to 2^+} (6 - x) = 6 - 2 = 4 \)
\(\lim_{x \to 2^-} f(x) = \lim_{x \to 2^-} (1 + x) = 1 + 2 = 3 \)

Since \(\lim_{x \to 2^+} f(x) \neq \lim_{x \to 2^-} f(x) \), then \(\lim_{x \to 2} f(x) \) does not exist. Thus \(f(x) \) is discontinuous at \(x = 2 \).

\(f(x) \) is continuous on \((-\infty, 2) \cup (2, \infty)\).
10. Find all vertical and horizontal asymptotes for the function

\[f(x) = \frac{(2x - 3)(x + 2)(x^2 - 1)}{(x - 4)(x + 3)x(x - 1)} \]

SOLUTION.

\[f(x) = \frac{(2x - 3)(x + 2)(x^2 - 1)}{(x - 4)(x + 3)x(x - 1)} = \frac{(2x - 3)(x + 2)(x - 1)(x + 1)}{(x - 4)(x + 3)x} \]

Lines \(x = -3, x = 0, \) and \(x = 4 \) are the vertical asymptotes for \(f \).

Since \(\lim_{{x \to \infty}} f(x) = \lim_{{x \to \infty}} \frac{(2x - 3)(x + 2)(x - 1)(x + 1)}{(x - 4)(x + 3)x} = 2 \), the equation of the horizontal asymptote is \(y = 2 \).

11. Let

\[p = 25 - 0.01x \quad \text{and} \quad C(x) = 2x + 9000 \]

where \(0 \leq x \leq 2500 \), be the price-demand equation and cost function, respectively, for the manufacture of umbrellas.

(a) Find the exact cost of producing the 31st umbrella. Use the marginal cost to approximate the cost of producing the 31st umbrella.

SOLUTION. The exact cost of producing the 31st umbrella is \(C(31) - C(30) = 2(31) + 9000 - (2(30) + 9000) = 2 \).

The marginal cost function \(C'(x) = 2 \). \(C''(30) \approx C'(31) - C'(30) \). \(C''(30) = 2 \).

(b) Find the marginal revenue and the marginal average revenue functions.

SOLUTION. The revenue \(R(x) = xp(x) = 25x - 0.01x^2 \)

The marginal revenue function is \(R'(x) = 25 - 0.02x \).

The average revenue is \(\bar{R} = \frac{R(x)}{x} = \frac{25x - 0.02x^2}{x} = 25 - 0.01x \).

The marginal average revenue is function \(\bar{R}'(x) = -0.01 \).

(c) Find the average profit per umbrella if 50 umbrellas is produced. Find the marginal average profit at a production level of 50 umbrellas. Estimate the average profit per umbrella if 51 umbrella is produced.

SOLUTION. The profit is \(P(x) = R(x) - C(x) = 25x - 0.01x^2 - (2x + 9000) = -0.01x^2 + 23x - 9000 \).

The average profit is \(\bar{P}(x) = \frac{P(x)}{x} = -0.01x + 23 - \frac{9000}{x} \).

The marginal average profit is \(\bar{P}'(x) = -0.01 + \frac{9000}{x^2} \).

The average profit per umbrella if 50 umbrellas is produced is \(\bar{P}(50) = -0.01(50) + 23 - \frac{9000}{50} = -157.5 \)

The marginal average profit at a production level of 50 umbrellas is \(\bar{P}'(50) = -0.01 + \frac{9000}{(50)^2} = 3.59 \)
The average profit per umbrella if 51 umbrella is produced is \(\bar{P}(50) + \bar{P}'(50) = -157.5 + 3.59 = -153.91 \)

12. A bank offers a 10-year certificate of deposit (CD) that earns 4.15\% compounded continuously.

(a) If $10000 is invested in this CD, how much will it be worth in 10 years?
SOLUTION. \(A = Pe^{rt} \), where \(P \) = principal, \(r \) = annual nominal interest rate compounded continuously, \(t \) = time in years, \(A \) = amount at time \(t \).

\(P = 10000 \), \(r = 0.0415 \), \(t = 10 \), \(A = \)?
\(A = 10000e^{0.0415 \times 10} = $15143.71 \)

(b) How long will it take for the account to be worth $18000?
\(A = 18000 \), \(P = 10000 \), \(r = 0.0415 \), \(t = \)?

\[
\begin{align*}
 A &= Pe^{rt} \\
 \frac{A}{P} &= e^{rt} \\
 \ln \left(\frac{A}{P} \right) &= \ln \left(e^{rt} \right) \\
 \ln \frac{A}{P} &= rt \\
 t &= \frac{1}{r} \ln \frac{A}{P} = \frac{1}{0.0415} \ln \frac{18000}{10000} \approx 14
\end{align*}
\]

13. A note will pay $25000 at maturity 10 years from now. How much should you willing to pay for the note now if money is worth 5\% compounded continuously?
SOLUTION. \(A = 25000 \), \(t = 10 \), \(r = 0.05 \), \(P = \)?

\[
\begin{align*}
 A &= Pe^{rt} \\
 P &= Ae^{-rt} = 25000e^{-0.05 \times 10} \approx $15163.27
\end{align*}
\]

14. At what nominal rate compounded continuously must money be invested to double in 8 years?
SOLUTION. \(A = 2P \), \(t = 8 \), \(r = \)?

\[
\begin{align*}
 2P &= Pe^{8r} \\
 2 &= e^{8r} \\
 \ln 2 &= \ln (e^{8r}) \\
 \ln 2 &= 8r \\
 r &= \frac{\ln 2}{8} \approx 8.66\%
\end{align*}
\]

15. Find the equation of the tangent line to the graph of the function \(f(x) = \ln(1 - x^2 + 2x^4) \) at the point where \(x = 1 \).
SOLUTION. The equation of the tangent line to the graph of the function \(f(x) = \ln(1 - x^2 + 2x^4) \) at the point where \(x = 1 \) is

\[
y - f(1) = f'(1)(x - 1)
\]
\[f(1) = \ln(1 - 1^2 + 2(1^4)) = \ln 2. \]
\[f'(x) = \frac{(1 - x^2 + 2x^4)'}{1 - x^2 + 2x^4} = \frac{-2x + 8x^3}{1 - x^2 + 2x^4}, \quad f'(1) = \frac{-2 + 8}{1 - 1 + 2} = \frac{6}{2} = 3 \]

Thus, the equation of the tangent line is \(y - \ln 2 = 3(x - 1) \) or \(y = 3x - 3 + \ln 2 \).

16. Find the value(s) of \(x \) where the tangent line to the graph of the function \(y = 5e^{x^2-4x+1} \) is horizontal.

SOLUTION. The tangent line is horizontal means that its slope is zero.

\[f'(x) = 5e^{x^2-4x+1}(x^2 - 4x + 1)' = (2x - 4)5e^{x^2-4x+1} = 0 \]
\[2x - 4 = 0 \]
\[x = 2 \]

17. Find each derivative

(a) \[\frac{d}{dx} \log_3(\sqrt[4]{4x^3 + 5x + 7}) = \frac{d}{dx} \log_3((4x^3 + 5x + 7)^{1/4}) = \frac{d}{4} \log_3(4x^3 + 5x + 7) = \frac{1}{4} \frac{d}{dx} \log_3(4x^3 + 5x + 7) = \frac{1}{4} \frac{d}{dx} \frac{1}{4x^2 + 5} \ln 3 \]

(b) \[\frac{d}{dx} 8^{1-2x^3} = 8^{1-2x^3} (1 - 2x^3)' \ln 8 = -6x^2 8^{1-2x^3} \ln 8. \]

(c) \[\frac{d}{dx} \frac{3x^2}{(x^2 + 5)^3} = \frac{6x(x^2 + 5) - 3(2x^2 + 5)^2(2x)(3x^2)}{6x(x^2 + 5)^2(x^2 + 3x^2)} = \frac{6x(x^2 + 5)^3 - 3(2x^2 + 5)^2(2x)(3x^2)}{(x^2 + 5)^6} = \frac{6x(5 - 2x^2)}{(x^2 + 5)^4} \]

(d) \[\frac{d}{dx} \left[(x^2 + x - 3)e^{2x+3}\right] = (2x + 1)e^{2x+3} + e^{2x+3}(2x + 3)'(x^2 + x - 3) = (2x + 1)e^{2x+3} + (2x + 3)(2x + 1)e^{2x+3} = (2x^2 + 4x - 5)e^{2x+3} \]

18. Given the price-demand equation

\[0.02x + p = 60 \]

(a) Find the elasticity of demand \(E(p) \).

SOLUTION. First, let’s solve the equation \(0.02x + p = 60 \) for \(x \).

\[x = \frac{60 - p}{0.02} = 3000 - 50p. \]

\[E(p) = \frac{-pf'(p)}{f(p)}, \]

where \(f(p) = 3000 - 50p. \)

\[E(p) = \frac{-p(2x + 1)}{3000 - 50p} = \frac{-p(2\left(\frac{60 - p}{0.02}\right) + 1)}{3000 - 50p} = \frac{-p(1200 - 2000 + 100 - p)}{60 - p} = \frac{-p(1000 - p)}{60 - p} \]
(b) For which values of \(p \) is demand elastic?

SOLUTION. The demand is elastic if \(E(p) > 1 \).
\[
\frac{p}{60 - p} > 1 \\
\frac{p}{60 - p} - 1 > 0 \\
\frac{p}{60 - p} - \frac{60 - p}{60 - p} > 0 \\
\frac{p - 60 + p}{2p - 60} > 0 \\
\frac{60 - p}{60 - p} > 0 \\
\frac{60 - p}{p - 30} > 0 \\
\frac{60 - p}{60 - p} > 0 \\
30 < p < 60
\]

(c) If \(p = \$10 \) and the price is increased by 5%, what is the approximate change in demand?

SOLUTION. \(E(10) = \frac{10}{60 - 10} = 0.2 \).

(change in demand) = \(E(10) \times \) (change in price) = \(0.2 \times (0.05) = 1\% \)

(d) If \(p = \$40 \) and the price is decreased, will revenue increase or decrease?

SOLUTION. \(E(40) = \frac{40}{60 - 40} = 2 > 1 \), the demand is elastic. If the price is decreased then the revenue will increase.

19. Find \(f''(x) \) for the functions

(a) \(f(x) = x^2(2x^3 - 5)^4 \)

SOLUTION. \(f'(x) = 2x(2x^3 - 5)^4 + (x^2)(4)(2x^3 - 5)^3(2x^3 - 5)' = 2x(2x^3 - 5)^4 + (x^2)(4)(2x^3 - 5)^3(6x^2) = 2x(2x^3 - 5)^4 + 24x^4(2x^3 - 5)^3 \)
\[
f''(x) = 2(2x^3 - 5)^4 + (2x)(4)(2x^3 - 5)^3(2x^3 - 5)' + (24)(4x^3)(2x^3 - 5)^3 + 24x^4(3)(2x^3 - 5)^2(2x^3 - 5)' = 2(2x^3 - 5)^4 + (2x)(4)(2x^3 - 5)^3(6x^2) + (24)(4x^3)(2x^3 - 5)^3 + 24x^4(3)(2x^3 - 5)^2(6x^2) = 2(2x^3 - 5)^4 + 48x^3(2x^3 - 5)^3 + 96x^3(2x^3 - 5)^3 + 432x^6(2x^3 - 5)^2 = 2(2x^3 - 5)^4 + 144x^3(2x^3 - 5)^3 + 432x^6(2x^3 - 5)^2
\]

(b) \(f(x) = \frac{2}{x} - \frac{6}{x^3} = 2x^{-1} - 6x^{-3} \).

SOLUTION. \(f'(x) = 2(-1)x^{-2} - 6(-3)x^{-4} = -2x^{-2} + 18x^{-4} \)
\[
f''(x) = -2(-2)x^{-3} + 18(-4)x^{-5} = 4x^{-3} - 72x^{-5}.
\]

20. Given the graph of the derivative \(f'(x) \) of the function \(y = f(x) \).
(a) Find the intervals on which \(f \) is increasing, decreasing.

SOLUTION. \(f \) is increasing on the interval where \(f'(x) > 0 \) and decreasing on the interval where \(f'(x) < 0 \).

\(f \) is increasing on \((a, e) \cup (g, \infty)\).

\(f \) is decreasing on \((e, g)\).

(b) Find \(x \)-coordinates of the critical points for the function \(f \). \(x = e \), and \(x = g \).

(c) Find the intervals on which \(f \) is concave upward, concave downward.

SOLUTION. \(f \) is CU on the interval where \(f' \) is increasing and CD on the interval where \(f' \) is decreasing.

\(f \) is CU on \((b, c) \cup (f, \infty)\)

\(f \) is CD on \((a, b) \cup (c, f)\).

(d) Find \(x \)-coordinates of the inflection points for \(f \). \(x = b \), \(x = c \), and \(x = f \).

21. Given the function \(f(x) = \frac{1}{3}x^3 + \frac{1}{2}x^2 - 3x + 4 \).

(a) Find critical values of \(f(x) \).

\[
f'(x) = x^2 + x - 3 = 0
\]

\[
x_1 = -2.3, \quad x_2 = 1.3
\]

(b) Find intervals on which \(f(x) \) is increasing and decreasing.

To find intervals we have to construct the sigh chart for \(f'(x) \).
The sign chart for $f'(x)$

f is increasing on $(-\infty, -2.3) \cup (1.3, \infty)$ and decreasing on $(-2.3, 1.3)$.

(c) Find local extrema for $f(x)$.
It follows from the sign chart that f has the local minimum at $x = 1.3$ and the local maximum at $x = -2.3$.

(d) Find intervals on which $f(x)$ is concave upward and concave downward.

\[f''(x) = 2x - 1 = 0 \]
\[x = -0.5 \]

To find intervals we have to construct the sign chart for $f''(x)$.

The sign chart for $f''(x)$

f is CU on $(-0.5, \infty)$ and CD on $(\infty, -0.5)$.

(e) Find all inflection points of $f(x)$.
f has the inflection point at $x = -0.5$

22. Find the absolute maximum and absolute minimum for the function $f(x) = \sqrt{9 - x^2}$ on the interval $[-1, 2]$.

SOLUTION.

\[f'(x) = \frac{1}{2}(9 - x^2)^{1/2-1}(9 - x^2)' = \frac{1}{2}(9 - x^2)^{-1/2}(-2x) = -x(9 - x^2)^{-1/2} = 0 \]
\[x = 0 \]

\[f(-1) = \sqrt{9 - 1} = \sqrt{8} \approx 2.83 \]
\[f(0) = \sqrt{9 - 0} = \sqrt{9} = 3 \text{ absolute maximum value} \]
\[f(2) = \sqrt{9 - 4} = \sqrt{5} \approx 2.24 \text{ absolute minimum value} \]
23. Find the absolute maximum and minimum for the function \(f(x) = \frac{x^2 - 1}{x^2 + 1} \).

SOLUTION.

\[
f'(x) = \frac{2x(x^2 + 1) - 2x(x^2 - 1)}{(x^2 + 1)^2} = \frac{4x}{(x^2 + 1)^2} = 0
\]

To classify the critical value \(x = 0 \) we have to use the Second Derivative Test.

\[
f''(x) = \frac{4(x^2 + 1)^2 - 8x(x^2 + 1)(2x)}{(x^2 + 1)^4} = \frac{4(x^2 + 1)^2 - 8x(x^2 + 1)(2x)}{(x^2 + 1)^4}
\]

\[
f''(0) = 4 > 0
\]

Function \(f \) has the absolute minimum at \(x = 0 \).

24. What are the dimensions of the rectangular field of 20000 square feet that will minimize the cost of fencing if one side costs three times as much per unit length as the other three?

SOLUTION. Let \(x \) be the length of the rectangle and \(y \) be the width of the rectangle.

The area of the rectangle is \(A = xy = 20000 \). Then

\[
y = \frac{20000}{x}.
\]

The fence along three sides is to be made of material that costs \(p \) per foot. The material of the fourth side costs \(3p \) per foot.

Then the cost of the fence is

\[
C(x) = (2y + x)p + 3px = 4px + 2py = 2p(2x + y) = 2p(2x + \frac{20000}{x})
\]

\[
C'(x) = 2p(2 - \frac{20000}{x^2}) = 0
\]

\[
1 - \frac{10000}{x^2} = 0
\]

\[
x^2 = 10000
\]

\[
x = 100, \quad y = \frac{20000}{100} = 200
\]

25. A 300-room hotel in Las Vegas is filled to capacity every night at $100 a room. For each $2 increase in rent, 5 fewer rooms are rented. If each rented room costs $10 service per day, how much should be management charge for each room to maximize gross profit? What is the maximum gross profit?

SOLUTION. Let \(x \) be the number of $2 increase in rent. Then

the rent is \(100 + 2x \)

the number of rooms rented is \(300 - 5x \)

the profit is \(P(x) = (100+2x-10)(300-5x) = (90+2x)(300-5x) \). We have to maximize profit.

\[
P'(x) = 2(300 - 5x) - 5(90 + 2x) = 150 - 20x = 0
\]

\[
x = 7.5
\]
To maximize the profit management should charge $100 + (2)(7.5) = $115 for each room. The maximum profit is $P(7.5) = (90 + (2)(7.5))(300 - (5)(7.5)) = $27652.50

26. Find the following indefinite integrals:

(a) \(\int \frac{1}{\sqrt{x}} \, dx = \left| \frac{u = \sqrt{x} = x^{1/2}}{du = 1/2x^{-1/2} \, dx = 2 \, du} \right| = \int e^u (2 \, du) = 2 \int e^u \, du = 2e^u + C = 2e^{\sqrt{x}} + C. \)

(b) \(\int \frac{x^3 - 3}{x^4 - 12x + 3} \, dx = \left| \frac{u = x^4 - 12x + 3}{du = (4x^3 - 12) \, dx = 4(x^3 - 3) \, dx = 1/4 \, du} \right| = \int \frac{1}{4u} \, du = \frac{\ln |u|}{4} + C = \frac{\ln |x^4 - 12x + 3|}{4} + C \)

(c) \(\int \frac{(\ln x)^2}{x} \, dx = \left| \frac{u = \ln x}{du = \frac{1}{x} \, dx} \right| = \int u^2 \, du = \frac{u^3}{3} + C = \frac{(\ln x)^3}{3} + C \)

(d) \(\int \frac{x}{(5 - 2x^2)^5} \, dx = \left| \frac{u = 5 - 2x^2}{du = -4x \, dx = -1/4 \, du} \right| = \int -\frac{1}{4} u^{-5} \, du = -\frac{1}{4} \frac{u^{-4}}{-4} + C = \frac{1}{16} (5 - 2x^2)^{-4} + C \)

(e) \(\int \frac{x}{\sqrt{3-x}} \, dx = \left| \frac{u = 3-x}{x = 3-u \, dx = - \, du} \right| = -\int \frac{3-u}{\sqrt{u}} \, du = -\int (3-u)u^{-1/2} \, du = -\int (3u^{-1/2} - u^{1/2}) \, du = -3\frac{u^{1/2}}{1/2} + u^{3/2}/3 + C = -6u^{1/2} + \frac{2}{3}u^{3/2} + C = -6(3-x)^{1/2} + \frac{2}{3}(3-x)^{3/2} + C \)

(f) \(\int e^{2x-1} \, dx = \left| \frac{u = 2x - 1}{x = \frac{u + 1}{2} \, dx = \frac{1}{2} \, du} \right| = \frac{1}{2} \int e^u \, du = \frac{1}{2} e^u + C = \frac{1}{2} e^{2x-1} + C \)

27. The weekly marginal revenue from the sale of \(x \) pairs of tennis shoes is given by

\[R'(x) = 40 - 0.002x + \frac{200}{x + 1} \]

where \(R(x) \) is revenue in dollars. Find the revenue function \(R(x) \). Find the revenue from the sale of 1000 pairs of shoes.

SOLUTION. \(R(x) = \int \left(40 - 0.002x + \frac{200}{x + 1}\right) \, dx = 40x - 0.01x^2 + 200 \int \frac{1}{x + 1} \, dx = \)
28. Calculate the following Riemann sum for the function \(f(x) = x^2 - 9x + 7 \). Partition the interval \([-1, 3]\) into four subintervals of equal length. For each subinterval \([x_k, x_{k+1}]\) let \(c_k \) be the midpoint.

SOLUTION. The length of subintervals is \(\Delta x = \frac{3 - (-1)}{4} = 1 \), the partition points are \(x_0 = -1 \), \(x_1 = -1 + 1 = 0 \), \(x_2 = 0 + 1 = 1 \), \(x_3 = 1 + 1 = 2 \), and \(x_4 = 3 \). The midpoint of the interval \([-1, 0]\) is \(c_1 = (-1 + 0)/2 = -0.5 \), the midpoint of the interval \([0, 1]\) is \(c_2 = (0 + 1)/2 = 0.5 \), the midpoint of the interval \([1, 2]\) is \(c_3 = (1 + 2)/2 = 1.5 \), and the midpoint of the interval \([2, 3]\) is \(c_4 = (2 + 3)/2 = 2.5 \).

The Riemann sum \(S_4 = f(c_1)\Delta x + f(c_2)\Delta x + f(c_3)\Delta x + f(c_4)\Delta x = f(-0.5)(1) + f(0.5)(1) + f(1.5)(1) + f(2.5)(1) = 11.75 + 2.75 + (-4.25) + (-9.25) = 1 \)

29. Evaluate each of the definite integrals:

(a) \(\int_0^A 32(x^2 + 1)^7x \, dx \) (\(A > 0 \))

SOLUTION. \(\int_0^A 32(x^2 + 1)^7x \, dx = \left. \frac{x^2 + 1}{2} \right|_0^A = \frac{A^2 + 1}{2} \)

\(2((A^2 + 1)^8 - 1^8) = 2(A^2 + 1)^8 - 2 \)

(b) \(\int_B^2 \left(5x - 4 \frac{x^2}{\sqrt{x^3}} \right) \, dx \), (\(0 < B < 2 \))

SOLUTION. \(\int_B^2 \left(5x - 4 \frac{x^2}{\sqrt{x^3}} \right) \, dx = \int_B^2 (5x - 4x^{2-3/4}) \, dx = \int_B^2 (5x - 4x^{5/4}) \, dx = \left[\frac{5x^2}{2} - 4 \frac{x^{1+5/4}}{1+5/4} \right]_B = \frac{5}{2} (2^2 - B^2) - \frac{16}{9} (2^{9/4} - B^{9/4}) = 1.5434 - \frac{5}{2} B^2 + \frac{16}{9} B^{9/4} \)

30. Calculate the definite integral \(\int_b^d f(x) \, dx \) by referring to the figure and list of area values below.
if of $A = 1.4$, area of $B = 2.4$, area of $C = 3.1$, area of $D = 2.1$.

SOLUTION. $\int_b^d f(x)dx = \text{area}(B) - \text{area}(C) + \text{area}(D) = -2.4 - 3.1 + 2.1 = -3.4$

31. Find the average value of the function $f(x) = 4x - 3x^2$ over the interval $[-2, 2]$.

SOLUTION. $f_\text{ave} = \frac{1}{2 - (-2)} \int_{-2}^2 (4x - 3x^2)dx = -4$

32. Find the area of the region bounded by:

(a) $y = 3 - x^2, y = 2x^2 - 4x$

SOLUTION.
Area = \frac{1.87}{-0.54} \int_{-0.54}^{0} (3 - x^2 - (2x^2 - 4))dx = 10.17

(b) \ y = x^3, \ y = 4x
SOLUTION.

Area = 2 \int_{0}^{2} (4x - x^3)dx = 8

(c) \ y = -x^2 - 2x, \ y = 0, \ x = -2, \ x = 1.
SOLUTION.

Area = \int_{-2}^{0} (-x^2 - 2x)dx + \int_{0}^{1} (x^2 + 2x)dx = \frac{8}{3}

33. Find the consumers’ surplus and producers’ surplus at the equilibrium price level for the
given price-demand and price-supply equations.

\[
p = D(x) = 70 - 0.2x \\
p = S(x) = 13 + 0.0012x^2
\]

Round all values to the nearest integer.

SOLUTION. The equilibrium quantity is the solution to the equation

\[
D(x) = S(x) \\
70 - 0.2x = 13 + 0.0012x^2
\]

Since \(x_1 < 0 \), then \(\bar{x} = 150 \).

Then the consumers’ surplus is

\[
CS = \int_{0}^{\bar{x}} (D(x) - \bar{p}) dx = \int_{0}^{150} (70 - 0.2x - 40) dx = 2250
\]

and the producers’ surplus is

\[
PS = \int_{0}^{\bar{x}} (\bar{p} - S(x)) dx = \int_{0}^{150} (40 - (13 + 0.0012x^2)) dx = 2700
\]

34. Let \(f(x, y) = 2x - 3y + 14 \) and \(g(x, y) = \frac{10}{x^2 + 4y} \). Find \(f(2, -3) - 4g(-1, 2) \).

SOLUTION. \(f(2, -3) - 4g(-1, 2) = 2(2) - 3(-3) + 14 - 4 \cdot \frac{10}{(-1)^2 + 4(2)} = 203 \cdot \frac{9}{9} \)

35. Weston Publishing publishes a deluxe edition and a standard edition of its English language dictionary. Weston’s management estimates that the number of deluxe editions demanded is \(x \) copies/day and the number of standard editions demanded is \(y \) copies/day when the unit prices are

\[
p = 20 - 0.005x - 0.001y \\
q = 15 - 0.001x - 0.003y
\]
dollars, respectively. Find the daily total revenue function \(R(x, y) \). Evaluate \(R(7, 3) \).

SOLUTION. \(R(x, y) = xp(x) + yq(y) = x(20 - 0.005x - 0.001y) + y(15 - 0.001x - 0.003y) = 20x - 0.005x^2 - 0.002xy + 15y - 0.003y^2 \)

\[R(7, 3) = 20(7) - 0.005(7)^2 - 0.002(7)(3) + 15(3) - 0.003(3)^2 = 184.686 \]

36. Find the cross-section of the surface \(z = 10x + 4xy + 15y^2 - 6x^2 + 5 \) produced by the cutting it with the planes \(x = 4 \), \(y = 2 \).

SOLUTION. If we cut the surface by the plane \(x = 4 \) we get

\[
z = 10(4) + 4(4)y + 15y^2 - 6(4)^2 + 5 = -51 + 16y + 15y^2 \text{ (parabola)}
\]
The cross-section of the surface by the plane \(y = 2 \) is

\[
z = 10x + 4x(2) + 15(2)^2 - 6x^2 + 5 = 65 + 18x - 6x^2 \text{ (parabola)}
\]

37. Find \(f_x, f_y, f_{xx}, f_{xy}, \) and \(f_{yy} \) for the functions:

(a) \(f(x, y) = \sqrt{2x - y^2} = (2x - y^2)^{1/2} \)

SOLUTION.

\[
f_x = \frac{1}{2}(2x - y^2)^{-1/2} - (2x - y^2)'_x = \frac{1}{2}(2x - y^2)^{-1/2}(2) = (2x - y^2)^{-1/2}
\]

\[
f_y = \frac{1}{2}(2x - y^2)^{-1/2} - (2x - y^2)'_y = \frac{1}{2}(2x - y^2)^{-1/2}(-2y) = -y(2x - y^2)^{-1/2}
\]

\[
f_{xx} = -\frac{1}{2}(2x - y^2)^{-3/2}(2x - y^2)'_x = -\frac{1}{2}(2x - y^2)^{-3/2}(2) = -(2x - y^2)^{-3/2}
\]

\[
f_{xy} = -\frac{1}{2}(2x - y^2)^{-3/2} - (2x - y^2)'_y = -\frac{1}{2}(2x - y^2)^{-3/2}(-2y) = y(2x - y^2)^{-3/2}
\]

\[
f_{yy} = -(y)'_y(2x - y^2)^{-1/2} - y((2x - y^2)^{-1/2})'_y = -(2x - y^2)^{-1/2} - y \left(-\frac{1}{2} \right) (2x - y^2)^{-3/2}
\]

(b) \(f(x, y) = e^{x\sqrt{y}} \)

SOLUTION.

\[
f_x = e^{x\sqrt{y}}(x\sqrt{y})'_x = \sqrt{y}e^{x\sqrt{y}} - y^{1/2}e^{x\sqrt{y}}
\]

\[
f_y = e^{x\sqrt{y}}(x\sqrt{y})'_y = \frac{1}{2}xy^{-1/2}e^{x\sqrt{y}}
\]

\[
f_{xx} = y^{1/2}e^{x\sqrt{y}}(x\sqrt{y})'_x = ye^{x\sqrt{y}}
\]

\[
f_{xy} = (y^{1/2})'ye^{x\sqrt{y}} + y^{1/2}(e^{x\sqrt{y}})'_y = \frac{1}{2}y^{-1/2}e^{x\sqrt{y}} + y^{1/2}e^{x\sqrt{y}}(x\sqrt{y})'_y = \frac{1}{2}y^{-1/2}e^{x\sqrt{y}} + \frac{1}{2}xe^{x\sqrt{y}}
\]

\[
f_{yy} = \frac{1}{2}x(y^{1/2})'_x e^{x\sqrt{y}} + \frac{1}{2}xy^{-1/2}(e^{x\sqrt{y}})'_y = \frac{1}{2}x \left(-\frac{1}{2} \right) y^{-1/2}e^{x\sqrt{y}} + \frac{1}{2}xy^{-1/2}e^{x\sqrt{y}}(x\sqrt{y})'_y = -\frac{1}{4}xy^{-3/2}e^{x\sqrt{y}} + \frac{1}{2}xy^{-1/2}e^{x\sqrt{y}}
\]

(c) \(f(x, y) = \ln(x^3 - y^2) \)

SOLUTION.

\[
f_x = \frac{(x^3 - y^2)'_x}{x^3 - y^2} = \frac{3x^2}{x^3 - y^2}
\]

\[
f_y = \frac{(x^3 - y^2)'_y}{x^3 - y^2} = -\frac{2y}{x^3 - y^2}
\]
\[f_{xx} = \frac{(3x^2)'(x^3 - y^2) - (x^3 - y^2)'3x^2}{(x^3 - y^2)^2} = \frac{6x(x^3 - y^2) - 3x^2(3x^2)}{(x^3 - y^2)^2} = \frac{6x(x^3 - y^2) - 9x^4}{(x^3 - y^2)^2} \]

\[f_{xy} = \frac{(3x^2)'y(x^3 - y^2) - (x^3 - y^2)'y3x^2}{(x^3 - y^2)^2} = \frac{-(2y)(3x^2)}{(x^3 - y^2)^2} = -\frac{6x^2y}{(x^3 - y^2)^2} \]

\[f_{yy} = \frac{(2y)'(x^3 - y^2) - (x^3 - y^2)'y}{(x^3 - y^2)^2} = \frac{-2(x^3 - y^2) - (-2y)(2y)}{(x^3 - y^2)^2} = -\frac{2(x^3 - y^2) + 4y^2}{(x^3 - y^2)^2} \]

38. Find the local extrema for the function \(f(x, y) = -x^2 - y^2 + 2x + 4y + 5 \).

SOLUTION.

\[f_x = -2x + 2 = 0 \quad f_y = -2x + 4 = 0 \]

The critical point is \((1, 2)\).

\(f_{xx} = -2 = A < 0 \)

\(f_{xy} = 0 = B \)

\(f_{yy} = -2 = C \)

\(AC - B^2 = (-2)(-2) - 0^2 = 4 > 0 \)

Since \(A < 0 \) and \(AC - B^2 > 0 \), then \(f \) has the local maximum at \((1, 2)\).

39. Average global temperatures from 1885 to 2005 are given in the table

<table>
<thead>
<tr>
<th>Year</th>
<th>°F</th>
<th>Year</th>
<th>°F</th>
</tr>
</thead>
<tbody>
<tr>
<td>1885</td>
<td>56.65</td>
<td>1955</td>
<td>57.06</td>
</tr>
<tr>
<td>1895</td>
<td>56.64</td>
<td>1965</td>
<td>57.05</td>
</tr>
<tr>
<td>1905</td>
<td>56.52</td>
<td>1975</td>
<td>57.04</td>
</tr>
<tr>
<td>1915</td>
<td>56.57</td>
<td>1985</td>
<td>57.36</td>
</tr>
<tr>
<td>1925</td>
<td>56.74</td>
<td>1995</td>
<td>57.64</td>
</tr>
<tr>
<td>1935</td>
<td>57.00</td>
<td>2005</td>
<td>58.59</td>
</tr>
<tr>
<td>1945</td>
<td>57.13</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Find the least squares line for the data, using \(x = 0 \) for 1885.

SOLUTION. The equation of the regression line is

\[y = 0.0121x + 56.379 \]

(b) Use the least squares line to estimate the average global temperature in 2085.

SOLUTION. The average global temperature in 2085 is

\[y(200) = 0.0121(200) + 56.379 = 58.799 \]