Math 142 - 511, 516, 517, Spring 2010
Lecture 2.

1/21/2010

Homework \#1 (Alg. Review \#1)
Homework \#2 (Alg. Review \#2)
Homework \#3 (Sections 2.2 \& 2.3)
Homework \#4 (Section 2.4)
are due Thursday, Jan. 28, 11:55 PM.

Chapter 2. Functions and graphs

Section 2.2 Elementary functions: graphs and transformations
Definition Functions whose definitions involve more than one rule are called piecewise-defined functions.

Example 1. Table below shows a recent state income tax schedule for individuals filing a return in the state of Kansas.

If taxable income is

over	but not over	tax due is
$\$ 0$	$\$ 15,000$	3.50% of taxable income
$\$ 15,000$	$\$ 30,000$	$\$ 525$ plus 6.25% of amount over $\$ 15,000$ $\$ 30,000$
$\$ 1,462.50$ plus 6.45% of amount over $\$ 30,000$		

1. Write a piecewise definition for the tax due $T(x)$ on an income of x dollars.
2. Graph $T(x)$
3. Find the tax due on a taxable income of $\$ 20,000$. Of $\$ 35,000$.

Section 2.3 Quadratic functions
Break-even analysis.
Given a revenue function $R(x)$ and a cost function $C(x)$. Break-even points are the production levels at which

$$
R(x)=C(x)
$$

A loss occurs if

$$
R(x)<C(x)
$$

and a profit occurs if

$$
R(x)>C(x)
$$

Example 2. The marketing research department for a company that manufactures and sells "notebook" computers established the revenue function $R(x)=2000 x-60 x^{2}$. Given the cost function $C(x)=4000+500 x$ where x is in thousands of computers, and $R(x)$ and $C(x)$ are in thousands of dollars. Both functions have domain $1 \leq x \leq 25$.

1. Sketch a graph of both functions.
2. Find the break-even points.
3. For what outputs will a loss occur? Will a profit occur?

Section 2.4 Exponential functions.
Definition The equation

$$
f(x)=b^{x}, \quad b>0, b \neq 1
$$

defines an exponential function for each different constant b, called the base. The domain of f is $(-\infty, \infty)$ and the range of f is $(0, \infty)$.

Basic properties of the graph of $f(x)=b^{x}, b>0, b \neq 1$.

1. All graphs will pass through the point $(0,1)$.
2. All graphs are continuous curves, with no holes or jumps.
3. The x axis is horisontal asymptote.
4. If $b>1$, then b^{x} increases as x increases.
5. If $0<b<1$, then b^{x} decreases as x increases.

Properties of exponential functions

For a and b positive, $a \neq 1, b \neq 1$, and x and y real,

1. Exponent laws:

$$
a^{x+y}=a^{x} a^{y}, \quad a^{x-y}=\frac{a^{x}}{a^{y}}, \quad\left(a^{x}\right)^{y}=a^{x y}, \quad(a b)^{x}=a^{x} b^{x}
$$

2. $a^{x}=a^{y}$ if and only if $x=y$
3. For $x \neq 0$,

$$
a^{x}=b^{x} \text { if and only if } a=b
$$

Example 3. Simplify each expression:
a) $\left(4^{3 x}\right)^{2 y}$,
b) $\left(2 \times 3^{1.2 t}\right)^{3}$,
c) $\frac{4^{x-3}}{4^{x-4}}$,
d) $5^{3 x-1} 5^{4-x}$.

Example 4. Solve each equation for x.
a) $10^{2-3 x}=10^{5 x-6}$

