Math 142 – 511, 516, 517, Spring 2010 Lecture 4.

1/28/2010

Homeworks #1, #2, #3, and #4 are **due Thursday**, **Jan. 28**, 11:55 PM.

Homework #5 (Section 2.5) Homework #6 (Section 3.1) Homework #7 (Section 3.2) are **due Thursday, Feb. 4, 11:55 PM.**

Help Sessions:

Mondays	7:00PM - 9:00PM	BLOC 117
Tuesdays	7:00PM - 9:00PM	BLOC 164
Thursdays	7:00PM – 9:00PM	BLOC 164

Section 2.5 Logarithmic functions

Inverse functions.

Definition. A function *f* is said to be **one-to-one** if each range value corresponds to exactly one domain value.

Horizontal line test. A function is one-to-one if and only if no horizontal line intersects its graph more that once.

Definition. If f is a one-to-one function, then the **inverse** of f is the function formed by interchanging the independent and dependent variables for f.

Note: if *f* is not one-to-one, then *f* **does not have an inverse.**

Logarithmic functions.

The inverse of an exponential function is called a **logarithmic** function. For b > 0 and $b \neq 1$,

 $y = \log_b x$ is equivalent to $x = b^y$.

The **log to the base** b of x is the exponent to which b must be raised to obtain x. The **domain** of the logarithmic function is $(0,\infty)$ and the **range** of the logarithmic function is $(-\infty,\infty)$. If b > 1, then $y = \log_b x$ increases as x increases; if 0 < b < 1, then $y = \log_b x$ is decreases as x increases.

Example 1. Rewrite

$$\log_2 16 = 4$$

in an equivalent exponential form.

Example 2. Change

$$125 = 5^3$$

to an equivalent logarithmic form.

 $\log_e x = \ln x$ $\log_{10} x = \log x$

If x, y > 0 and b, c, and k are constants, $b > 0, b \neq 1, c > 0, c \neq 1$, then 1. $\log_b 1 = 0$ 2. $\log_b b = 1$ 3. $\log_b(b^x) = x$ 4. $b^{\log_b x} = x$ 5. $\log_b(xy) = \log_b x + \log_b y$ 6. $\log_b \frac{x}{y} = \log_b x - \log_b y$ 7. $\log_b(x^k) = k \log_b x$ 8. $\log_b x = \frac{\log_c x}{\log_c b}$ 9. $\log_b x = \log_b y$ if and only if x = y

Example 3. Solve the following equations: a) $\log_{25} x = \frac{1}{2}$ b) $\log_5 x = \frac{2}{3}\log_5 8 + \frac{1}{2}\log_5 9 - \log_5 6$ c) $\log_2(x-1) = 2 + \log_2(x+4)$ d) $1.03^x = 2.43$

Chapter 3. Limits and Derivative Section 3.1 Introduction to limits

Definition We write

$$\lim_{x \to c} f(x) = L \quad \text{or} \quad f(x) \to L \text{ as } x \to c$$

and say "the limit of f(x), as x approaches c, if the functional value f(x) is close to the single number L whenever x is close, but not equal, to c (on both sides of c).

Definition We write

$$\lim_{x\to c^-} f(x) = K$$

and call K the **limit from the left** or the **left-hand limit** if f(x) is close to K whenever x is close to, but to the left of, c on the real number line.

We write

$$\lim_{x\to c^+} f(x) = L$$

and call L the **limit from the right** or the **right-hand limit** if f(x) is close to L whenever x is close to, but to the right of, c on the real number line.

If no direction is specified in a limit statement, we will always assume that the limit is **two-sided** or **unrestricted**.

$$\lim_{x \to c} f(x) = L \text{ if and only if } \lim_{x \to c^-} f(x) = \lim_{x \to c^+} f(x) = L$$

Example 4. Given the graph of the function *f*

