Math 142 - 511, 516, 517, Spring 2010
Lecture 4.
$1 / 28 / 2010$

Homeworks \#1, \#2, \#3, and \#4 are due Thursday, Jan. 28, 11:55 PM.

Homework \#5 (Section 2.5)
Homework \#6 (Section 3.1)
Homework \#7 (Section 3.2)
are due Thursday, Feb. 4, 11:55 PM.
Help Sessions:
Mondays 7:00PM-9:00PM BLOC 117
Tuesdays 7:00PM -9:00PM BLOC 164
Thursdays 7:00PM -9:00PM BLOC 164

Section 2.5 Logarithmic functions

Inverse functions.
Definition. A function f is said to be one-to-one if each range value corresponds to exactly one domain value. Horizontal line test. A function is one-to-one if and only if no horizontal line intersects its graph more that once.
Definition. If f is a one-to-one function, then the inverse of f is the function formed by interchanging the independent and dependent variables for f.
Note: if f is not one-to-one, then f does not have an inverse.

Logarithmic functions.

The inverse of an exponential function is called a logarithmic function. For $b>0$ and $b \neq 1$,

$$
y=\log _{b} x \text { is equivalent to } x=b^{y}
$$

The log to the base b of x is the exponent to which b must be raised to obtain x. The domain of the logarithmic function is $(0, \infty)$ and the range of the logarithmic function is $(-\infty, \infty)$. If $b>1$, then $y=\log _{b} x$ increases as x increases; if $0<b<1$, then $y=\log _{b} x$ is decreases as x increases.

Example 1. Rewrite

$$
\log _{2} 16=4
$$

in an equivalent exponential form.
Example 2. Change

$$
125=5^{3}
$$

to an equivalent logarithmic form.

$$
\log _{\mathrm{e}} x=\ln x \quad \log _{10} x=\log x
$$

If $x, y>0$ and b, c, and k are constants, $b>0, b \neq 1, c>0$, $c \neq 1$, then

1. $\log _{b} 1=0$
2. $\log _{b} b=1$
3. $\log _{b}\left(b^{x}\right)=x$
4. $b^{\log _{b} x}=x$
5. $\log _{b}(x y)=\log _{b} x+\log _{b} y$
6. $\log _{b} \frac{x}{y}=\log _{b} x-\log _{b} y$
7. $\log _{b}\left(x^{k}\right)=k \log _{b} x$
8. $\log _{b} x=\frac{\log _{c} x}{\log _{c} b}$
9. $\log _{b} x=\log _{b} y$ if and only if $x=y$

Example 3. Solve the following equations:
a) $\log _{25} x=\frac{1}{2}$
b) $\log _{5} x=\frac{2}{3} \log _{5} 8+\frac{1}{2} \log _{5} 9-\log _{5} 6$
c) $\log _{2}(x-1)=2+\log _{2}(x+4)$
d) $1.03^{x}=2.43$

Chapter 3. Limits and Derivative

Section 3.1 Introduction to limits

Definition We write

$$
\lim _{x \rightarrow c} f(x)=L \quad \text { or } \quad f(x) \rightarrow L \text { as } x \rightarrow c
$$

and say "the limit of $f(x)$, as x approaches c, if the functional value $f(x)$ is close to the single number L whenever x is close, but not equal, to c (on both sides of c).

Definition We write

$$
\lim _{x \rightarrow c^{-}} f(x)=K
$$

and call K the limit from the left or the left-hand limit if $f(x)$ is close to K whenever x is close to, but to the left of, c on the real number line.

We write

$$
\lim _{x \rightarrow c^{+}} f(x)=L
$$

and call L the limit from the right or the right-hand limit if $f(x)$ is close to L whenever x is close to, but to the right of, c on the real number line.
If no direction is specified in a limit statement, we will always assume that the limit is two-sided or unrestricted.

$$
\lim _{x \rightarrow c} f(x)=L \text { if and only if } \lim _{x \rightarrow c^{-}} f(x)=\lim _{x \rightarrow c^{+}} f(x)=L
$$

Example 4. Given the graph of the function f

Find: $\begin{array}{lll}\text { a) } \lim _{x \rightarrow 1} f(x) & \text { b) } \lim _{x \rightarrow 2^{+}} f(x) & \text { c) } \lim _{x \rightarrow 2^{-}} f(x)\end{array}$
d) $\lim _{x \rightarrow 3^{+}} f(x) \quad$ e) $\lim _{x \rightarrow 3^{-}} f(x)$

