Math 142, 511, 516, 517, Spring 2010 Lecture 7.

2/9/2010

Homework \#8 (Section 3-3)
Homework \#9 (Section 3-4)
are due Thursday, Feb. 11, 11:55 PM.

Test 1 will be held on Thursday, Feb. 11. It will cover sections 2.2, 2.3 (what we did in class), 2.4, 2.5, 3.1-3.5.

How to clear your calculator: 7:Reset, cursor right to ALL, 2:RESET

Section 3-4 The Derivative

Example 1. The profit (in dollars) from the sale of x car seats for infants is given by

$$
P(x)=45 x-0.025 x^{2}-5000, \quad 0 \leq x \leq 2400
$$

Find the average change in profit if production is changed from 800 sets to 850 seats.

Definition. For $y=f(x)$, the average rate of change from $x=a$ to $x=a+h$ is

$$
\frac{f(a+h)-f(a)}{(a+h)-a}=\frac{f(a+h)-f(a)}{h} \quad h \neq 0 .
$$

The expression

$$
\frac{f(a+h)-f(a)}{h}
$$

is called the difference quotient.

Example 2. Suppose an object moves along the y-axis so its location is $y=x^{2}+x$ at time $x(y$ is in meters and x is in seconds). Find:

1. The average velocity (the average rate of change of y with respect to x) for x changing from 1 to 3 seconds.
2. The average velocity for x changing from 1 to $1+h$ seconds.
3. The instantaneous velocity at $x=1$ seconds.

Definition. For $y=f(x)$, the instantaneous rate of change at $x=a$ is

$$
\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

if the limit exists.

Slope of a secant line.

Definition. Given $y=f(x)$, the slope of the graph at the point $(a, f(a))$ is given by

$$
\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

provided that the limit exists. The slope of the graph is also the slope of the tangent line at the point $(a, f(a))$.

Definition For $y=f(x)$ we define the derivative of f at x, denoted by $f^{\prime}(x)$, to be

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \text { if the limit exists }
$$

If $f^{\prime}(x)$ exists for each x in the open interval (a, b), then f is said to be differentiable over (a, b).
(Differentiability from the left or from the right is defined by using $h \rightarrow 0^{-}$or $h \rightarrow 0^{+}$, respectively, in place $h \rightarrow 0$ in the preceding definition).
The process of finding the derivative of a function is called differentiation.
The derivative of a function f is a new function f^{\prime}. Interpretations of the derivative.

1. Slope of the tangent line.
2. Instantaneous rate of change.
3. Velocity.

How to find the derivative of a function f :

1. Find $f(x+h)$
2. Find $f(x+h)-f(x)$
3. Find $\frac{f(x+h)-f(x)}{h}$.
4. Find $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$.

Example 3. Find $f^{\prime}(x)$ for $f(x)=x+4$.
Example 4. Where is the function $f(x)=|x-2|$ differentiable?
When is the function not differentiable at $x=a$?

1. f has a "corner" at a
2. f is discontinuous at a
3. the curve $y=f(x)$ has a vertical tangent line at $x=a$ Table of derivatives

$$
\begin{aligned}
& \text { 1. }(C)^{\prime}=0, C \text { is a constant, } \\
& \text { 2. }(x)^{\prime}=1, \\
& \text { 3. }\left(x^{2}\right)^{\prime}=2 x, \\
& \text { 4. }\left(x^{n}\right)^{\prime}=n x^{n-1},
\end{aligned}
$$

Differentiation formulas

Suppose c is a constant and both functions $f(x)$ and $g(x)$ are differentiable, then
(a) $(c f(x))^{\prime}=c f^{\prime}(x)$,
(b) $(f(x)+g(x))^{\prime}=f^{\prime}(x)+g^{\prime}(x)$,
(c) $(f(x)-g(x))^{\prime}=f^{\prime}(x)-g^{\prime}(x)$.

Example 5. Differentiate each function.
(a) $f(x)=x^{5}-4 x^{3}+2 x-3$
(b) $f(x)=3 x^{2 / 3}-2 x^{5 / 2}+x^{-3}$
(c) $f(x)=x^{2} \sqrt[3]{x^{2}}$

Example 6. Find the equation to the tangent line to curve $y=x+\sqrt{x}$ at the point $(1,2)$

