Math 142, 511, 516, 517, Spring 2010 Lecture 8.

2/16/2010

Homework \#10 (Section 3-5)
Homework \#11 (Section 3-7)
are due Thursday, Feb. 18, 11:55 PM.

Table of derivatives

$$
\begin{aligned}
& \text { 1. }(C)^{\prime}=0, C \text { is a constant, } \\
& \text { 2. }(x)^{\prime}=1, \\
& \text { 3. }\left(x^{n}\right)^{\prime}=n x^{n-1} .
\end{aligned}
$$

Differentiation formulas

Suppose c is a constant and both functions $f(x)$ and $g(x)$ are differentiable, then
(a) $(c f(x))^{\prime}=c f^{\prime}(x)$,
(b) $(f(x)+g(x))^{\prime}=f^{\prime}(x)+g^{\prime}(x)$,
(c) $(f(x)-g(x))^{\prime}=f^{\prime}(x)-g^{\prime}(x)$.

Section 3-7. Marginal analysis in business and economics.

In economics the word marginal refers to a rate of change. If $C(x)$ is the total cost of producing x items, then $C^{\prime}(x)$ represents the instantaneous rate of change of total cost with respect to the number of item produced.

Definition. If x is the number of units of a product produced in some time interval, then

$$
\begin{gathered}
\text { total cost }=C(x) \\
\text { marginal cost }=C^{\prime}(x) \\
\text { total revenue }=R(x) \\
\text { marginal revenue }=R^{\prime}(x) \\
\text { total profit }=P(x)=R(x)-C(x) \\
\text { marginal profit }=P^{\prime}(x)=R^{\prime}(x)-C^{\prime}(x)
\end{gathered}
$$

Note. $\quad C(x)$ represents the total cost of producing x items. Exact cost of producing the $(x+1)$ st item $=C(x+1)-C(x)$.

Marginal cost and exact cost. If $C(x)$ is the total cost producing x items, the marginal cost function approximates the exact cost of producing the $(x+1)$ st item:

$$
C^{\prime}(x) \approx C(x+1)-C(x)
$$

Similar statement can be made for $R(x)$ and $P(x)$.
Example 1. The total cost (in dollars) of producing x electric guitars is

$$
C(x)=1000+100 x-0.25 x^{2}
$$

(a) Find the exact cost of producing the 51st guitar.
(b) Use the marginal cost to approximate the cost of producing the 51st guitar.

Example 2. The price-demand equation and the cost function for the production of table saws are given, respectively, by

$$
x=600-3 p \text { and } C(x)=7200+6 x
$$

where x is a number of saws that can be sold at a price of $\$ p$ per saw and $C(x)$ is the total cost (in dollars) of producing x saws.
(a) Express p as a function of x.
(b) Find the marginal cost.
(c) Find the revenue function.
(d) Find the marginal revenue.
(e) Find $R^{\prime}(150)$ and interpret this quantity.
(f) Find the profit function in terms of x.
(g) Find the marginal profit.
(h) Find $P^{\prime}(150)$ and interpret this quantity.

Marginal average cost, revenue, and profit. If x is the number of units of a product produced in some time interval, then

$$
\text { average cost } \bar{C}(x)=\frac{C(x)}{x}
$$

marginal average cost $=\bar{C}^{\prime}(x)=(\bar{C}(x))^{\prime}$

$$
\text { average revenue } \bar{R}(x)=\frac{R(x)}{x}
$$

marginal average revenue $=\bar{R}^{\prime}(x)=(\bar{R}(x))^{\prime}$
average profit $\bar{P}(x)=\frac{P(x)}{x}$
marginal average profit $=\bar{P}^{\prime}(x)=(\bar{P}(x))^{\prime}$
Example 3. Consider the cost function for the production of table saws from Example $2 C(x)=7200+6 x$.
(a) Find $\bar{C}(x)$ and $(\bar{C}(x))^{\prime}$.
(b) Find $\bar{C}(100)$ and $\bar{C}^{\prime}(100)$, and interpret these quantities.
(c) Use the result in part (b) to estimate the average cost per saw at a production level of 101 saws.

Chapter 4. Additional derivative topics.

Section 4-1 The constant e and continuous compound interest.

The number e.

$$
e=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n} \approx 2.718
$$

If a principal P is invested at an annual rate r (expressed as a decimal) compounded n times a year, then the amount A in the account at the end of t years is given by

$$
A=P\left(1+\frac{r}{n}\right)^{n t}
$$

let us find

$$
\lim _{n \rightarrow \infty} P\left(1+\frac{r}{n}\right)^{n t}=P e^{r t}
$$

Continuous compound interest

$$
A=P e^{r t}
$$

where
$P=$ principal
$r=$ annual nominal interest rate compounded continuously
$t=$ time in years
$A=$ amount at time t.
Example 4. Provident Bank offers a 3-years certificate of deposit (CD) that earns 5.28% compounded continuously. If $\$ 10000$ is invested in this CD, how much will it be worth in 3 years?

Example 5. How long will it take money to double if it is invested at 7% compounded continuously?

Example 6. A note will pay $\$ 20000$ at maturity 10 years from now. How much should you be willing to pay for the note now if money is worth 5.2% compounded continuously?

Section 4-2. Derivatives of exponential and logarithmic functions.

Let us find $\left(e^{x}\right)^{\prime}$.

$$
\begin{gathered}
\lim _{h \rightarrow 0} \frac{e^{h}-1}{h}=1 \\
\left(e^{x}\right)^{\prime}=e^{x}
\end{gathered}
$$

Example 7. Find f^{\prime} for
(a) $f(x)=3 e^{x}+2$
(b) $f(x)=\sqrt{x}-e^{x}$
(c) $f(x)=e^{x}+x^{e}$.

