Math 142, 511, 516, 517, Spring 2010
Lecture 9.

2/18/2010

Homework \#10 (Section 3-5)
Homework \#11 (Section 3-7)
are due Thursday, Feb. 18, 11:55 PM.
Homework \#12 (Section 4-1)
Homework \#13 (Section 4-2)
Homework \#14 (Section 4-3)
Homework \#15 (Section 4-4)
are due Thursday, Feb. 25, 11:55 PM.

Table of derivatives

1. $(C)^{\prime}=0, C$ is a constant,
2. $(x)^{\prime}=1$,
3. $\left(x^{n}\right)^{\prime}=n x^{n-1}$,
4. $\left(e^{x}\right)^{\prime}=e^{x}$.

Section 4-2. Derivatives of exponential and logarithmic functions.

$$
\left(e^{x}\right)^{\prime}=e^{x} .
$$

Example 1. Find the equation of the tangent line to the graph of the function

$$
f(x)=x+e^{x}
$$

at the point where $x=0$.
The derivative of $\ln x$.

$$
(\ln x)^{\prime}=\frac{1}{x}
$$

Example 2. Differentiate the function $f(x)=\ln x^{2}+\sqrt[3]{x^{2}}-2 e^{x}$

$$
\begin{gathered}
\left(\log _{b} x\right)^{\prime}=\frac{1}{x \ln b} \\
\left(b^{x}\right)^{\prime}=b^{x} \ln b
\end{gathered}
$$

Example 3. Differentiate the following functions.
(a) $f(x)=3 \log _{2} x$
(b) $f(x)=\log x+5^{x}$

Example 4. The salvage value S (in dollars) of a company airplane after t years is estimated to be given by

$$
S(t)=300000(0.9)^{t}
$$

What is the rate of depreciation in 5 years?

Section 4-3. Derivatives of products and quotients.

Product rule. $(f(x) g(x))^{\prime}=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)$.
Example 5. Find $f^{\prime}(x)$ for
(a) $f(x)=x^{3}\left(x^{2}-x+5\right)$
(b) $f(x)=\left(x^{3}-2 x+1\right)\left(x^{2}+1\right)$
(c) $f(x)=\left(2 x^{2}+1\right) e^{x}$.

Quotient rule. $\left(\frac{f(x)}{g(x)}\right)^{\prime}=\frac{f^{\prime}(x) g(x)-g^{\prime}(x) f(x)}{[g(x)]^{2}}$.
Example 6. Find f^{\prime}
(a) $f(x)=\frac{x^{2}+1}{x^{3}+1}$
(b) $f(x)=\frac{\ln x}{\ln x+1}$
(c) $f(x)=\frac{2^{x}}{e^{x}+x}$

Section 4-4. The chain rule.

Definition. A function m is a composite of functions f and g if

$$
m(x)=f(g(x))
$$

The domain of m is the set of all numbers x such that x is in the domain of g and $g(x)$ is in the domain of f.

Example 7. Let $f(x)=x^{2}$ and $g(x)=e^{x}$. Find $f(g(x))$ and $g(f(x))$.

Example 8. Write each function as a composition of two simpler functions.
(a) $f(x)=\ln \left(x^{2}+3\right)$
(b) $f(x)=\sqrt[3]{3-4 x^{2}}$
(c) $f(x)=\left(x^{6}+3 x^{2}-1\right)^{5}$.

General power rule. If $u(x)$ is a differentiable function, n is any real number, then

$$
\left([u(x)]^{n}\right)^{\prime}=n[u(x)]^{n-1} u^{\prime}(x) .
$$

Example 9. Find f^{\prime} if
(a) $f(x)=(2 x+3)^{5}$
(b) $f(x)=\sqrt{2-3 x^{3}}$
(c) $f(x)=(\ln x+2)^{2}$.

Chain rule. If $m(x)=f(g(x))$, then

$$
m^{\prime}(x)=f^{\prime}(g(x)) g^{\prime}(x)
$$

Example 10. Let $f(x)=e^{x}$ and $g(x)=x^{3}+2 x-1$. Find
(a) $[f(g(x))]^{\prime}$
(b) $[g(f(x))]^{\prime}$.

