Math 142, 511, 516, 517, Spring 2010 Lecture 10.

2/23/2010

Homework \#12 (Section 4-1)
Homework \#13 (Section 4-2)
Homework \#14 (Section 4-3)
Homework \#15 (Section 4-4)
are due Thursday, Feb. 25, 11:55 PM.

Quiz \#5 will be held on Thursday, Feb. 25, and will cover sections 4-3 and 4-4.

Homework \#16 (Section 4-7)
Homework \#17 (Section 5-1)
Homework \#18 (Section 5-2)
are due Thursday, March 4, 11:55 PM.

Table of derivatives

$$
\begin{aligned}
& \text { 1. }(C)^{\prime}=0, C \text { is a constant, } \\
& \text { 2. }(x)^{\prime}=1, \\
& \text { 3. }\left(x^{n}\right)^{\prime}=n x^{n-1}, \\
& \text { 4. }\left(e^{x}\right)^{\prime}=e^{x}, \quad \text { 4a. }\left(b^{x}\right)^{\prime}=b^{x} \ln b, \\
& \text { 5. }(\ln x)^{\prime}=\frac{1}{x}, \quad \text { 5a. }\left(\log _{b} x\right)^{\prime}=\frac{1}{x \ln b .}
\end{aligned}
$$

Differentiation formulas
(a) $(c f(x))^{\prime}=c f^{\prime}(x), c$ is a constant,
(b) $(f(x)+g(x))^{\prime}=f^{\prime}(x)+g^{\prime}(x)$,
(c) $(f(x)-g(x))^{\prime}=f^{\prime}(x)-g^{\prime}(x)$,
(d) $(f(x) g(x))^{\prime}=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)$,
(e) $\left(\frac{f(x)}{g(x)}\right)^{\prime}=\frac{f^{\prime}(x) g(x)-g^{\prime}(x) f(x)}{[g(x)]^{2}}$,
(f) $(f(g(x)))^{\prime}=f^{\prime}(g(x)) g^{\prime}(x)$.

Section 4-4. The chain rule.

Definition. A function m is a composite of functions f and g if

$$
m(x)=f(g(x))
$$

The domain of m is the set of all numbers x such that x is in the domain of g and $g(x)$ is in the domain of f.

Chain rule. If $m(x)=f(g(x))$, then

$$
m^{\prime}(x)=f^{\prime}(g(x)) g^{\prime}(x)
$$

Example 1. Let $f(x)=2^{x}$ and $g(x)=x^{2}+2 x^{3}$. Find
(a) $[f(g(x))]^{\prime}$
(b) $[g(f(x))]^{\prime}$.

General derivative rules.

$$
\begin{gathered}
\left([u(x)]^{n}\right)^{\prime}=n[u(x)]^{n-1} u^{\prime}(x) \\
(\ln [u(x)])^{\prime}=\frac{u^{\prime}(x)}{u(x)} \\
\left(e^{u(x)}\right)^{\prime}=e^{u(x)} u^{\prime}(x)
\end{gathered}
$$

Example 2. Find f^{\prime} for
(a) $f(x)=\left(x^{3}+2 x-1\right)^{5}$
(b) $f(x)=(x-2 \ln x)^{4}$
(c) $f(x)=x^{2} e^{2 x^{3}}$
(d) $f(x)=\sqrt{\ln x}$
(e) $f(x)=\frac{x}{(5-2 x)^{3}}$
(f) $f(x)=\sqrt{\frac{4 x+1}{2 x^{2}+1}}$
(g) $f(x)=\left(e^{x^{2}+1}\right)^{3}$
(h) $f(x)=3 \ln \left(1+x^{2}\right)$

Section 4-7 Elasticity of demand.

Question: When will a price increase lead to an increase in revenue? To answer this question we will use the notion of elasticity of demand.

Definition. The relative rate of change of a function $f(x)$ is $\frac{f^{\prime}(x)}{f(x)}$. The percentage rate of change is $100 \times \frac{f^{\prime}(x)}{f(x)}$.
Since

$$
(\ln [f(x)])^{\prime}=\frac{f^{\prime}(x)}{f(x)}
$$

the relative rate of change of $f(x)$ is the derivative of the logarithm of $f(x)$. This is also referred to as the logarithmic derivative of $f(x)$.

Example 3. Find the relative rate of change of $f(x)=50 x-0.01 x^{2}$.

Logarithmic derivatives and relative rates are used by economists to study the relationship among price changes, demand, and revenue. For most products, demand is assumed to be a decreasing function of price. That is, price increases result in lower demand, and price decreases result in higher demand.
Economists use elasticity of demand to study the relationship between changes in price and changes in demand.

Definition. If price and demand are related by $x=f(p)$, then the elasticity of demand is given by

$$
E(p)=\frac{\text { relative rate of change of demand }}{\text { relative rate of change of price }}=-\frac{p f^{\prime}(p)}{f(p)} .
$$

Example 4. Given the price-demand equation

$$
p+0.005 x=30
$$

(a) Find the elasticity of demand $E(p)$.
(b) What is elasticity of demand if $p=\$ 10$? If this price is increased by 10%, what is the approximate change in demand?
(c) What is elasticity of demand if $p=\$ 25$? If this price is increased by 10%, what is the approximate change in demand?
(d) What is elasticity of demand if $p=\$ 15$? If this price is increased by 10%, what is the approximate change in demand?

If $0<E(p)<1$, then the demand is inelastic, that is the demand is not sensitive to changes in price. A change in price produces a smaller change in demand.

If $E(p)>1$, then the demand is elastic, that is the demand is sensitive to changes in price. A change in price produces a larger change in demand.

If $E(p)=1$, then the demand is unit. A change in price produces the same change in demand.

Now we want to see how revenue and elasticity are related.

$$
\begin{gathered}
\text { Revenue }=(\text { demand }) \times(\text { price })=x p=p f(p) \\
R^{\prime}(p)=f(p)(1-E(p))
\end{gathered}
$$

Since $f(p)>0, R^{\prime}(p)$ and $1-E(p)$ always have the same sign.
If $E(p)<1$ (demand is inelastic), then $1-E(p)>0$ and $R^{\prime}(p)>0$.

If $E(p)>1$ (demand is elastic), then $1-E(p)<0$ and $R^{\prime}(p)<0$.

Revenue and elasticity of demand.

Demand is inelastic:
A price increase will increase revenue.
A price decrease will decrease revenue.

Demand is elastic:
A price increase will decrease revenue.
A price decrease will increase revenue.
Example 5. The price-demand equation for hamburgers at a fast-food restaurant is

$$
x+400 p=2000
$$

Currently, the price of a hamburger is $\$ 2$. If the price is increased by 10%, will revenue increase or decrease?

