Math 142, 511, 516, 517, Spring 2010
Lecture 11.

2/25/2010

Homework \#12 (Section 4-1)
Homework \#13 (Section 4-2)
Homework \#14 (Section 4-3)
Homework \#15 (Section 4-4)
are due Thursday, Feb. 25, 11:55 PM.

Homework \#16 (Section 4-7)
Homework \#17 (Section 5-1)
Homework \#18 (Section 5-2)
are due Thursday, March 4, 11:55 PM.

Section 4-7 Elasticity of demand.

Question: When will a price increase lead to an increase in revenue?

Definition. The relative rate of change of a function $f(x)$ is $\frac{f^{\prime}(x)}{f(x)}$. The percentage rate of change is $100 \times \frac{f^{\prime}(x)}{f(x)}$.
Since

$$
(\ln [f(x)])^{\prime}=\frac{f^{\prime}(x)}{f(x)}
$$

the relative rate of change of $f(x)$ is the derivative of the logarithm of $f(x)$. This is also referred to as the logarithmic derivative of $f(x)$.

Example 1. Find the relative rate of change of $f(x)=50 x-0.01 x^{2}$.

For most products, demand is assumed to be a decreasing function of price.

Definition. If price and demand are related by $x=f(p)$, then the elasticity of demand is given by

$$
E(p)=\frac{\text { relative rate of change of demand }}{\text { relative rate of change of price }}=-\frac{p f^{\prime}(p)}{f(p)} .
$$

Example 2. Given the price-demand equation

$$
p+0.005 x=30
$$

(a) Find the elasticity of demand $E(p)$.
(b) What is elasticity of demand if $p=\$ 10$? If this price is increased by 10%, what is the approximate change in demand?
(c) What is elasticity of demand if $p=\$ 25$? If this price is increased by 10%, what is the approximate change in demand?
(d) What is elasticity of demand if $p=\$ 15$? If this price is increased by 10%, what is the approximate change in demand?

If $0<E(p)<1$, then the demand is inelastic, that is the demand is not sensitive to changes in price. A change in price produces a smaller change in demand.

If $E(p)>1$, then the demand is elastic, that is the demand is sensitive to changes in price. A change in price produces a larger change in demand.

If $E(p)=1$, then the demand is unit. A change in price produces the same change in demand.

Now we want to see how revenue and elasticity are related.

$$
\begin{aligned}
\text { Revenue }= & (\text { demand }) \times(\text { price })=x p=p f(p) \\
& R^{\prime}(p)=f(p)(1-E(p))
\end{aligned}
$$

Since $f(p)>0, R^{\prime}(p)$ and $1-E(p)$ always have the same sign.
If $E(p)<1$ (demand is inelastic), then $1-E(p)>0$ and $R^{\prime}(p)>0$.

If $E(p)>1$ (demand is elastic), then $1-E(p)<0$ and $R^{\prime}(p)<0$.

Revenue and elasticity of demand.

Demand is inelastic:
A price increase will increase revenue.
A price decrease will decrease revenue.

Demand is elastic:
A price increase will decrease revenue.
A price decrease will increase revenue.
Example 3. The price-demand equation for hamburgers at a fast-food restaurant is

$$
x+400 p=2000
$$

Currently, the price of a hamburger is $\$ 2$. If the price is increased by 10%, will revenue increase or decrease?

Chapter 5. Graphing and optimization.

Section 5-1. First derivative and graphs.

Definition. The values of x in the domain of f where $f^{\prime}(x)=0$ or where $f^{\prime}(x)$ does not exist are called the critical values of f.

Example 4. Find all critical values of the function $f(x)=x \sqrt{x^{2}+1}$.

Definition. The function f is increasing on an interval (a, b) if

$$
f\left(x_{2}\right)>f\left(x_{1}\right)
$$

whenever $a<x_{1}<x_{2}<b$, and f is decreasing on (a, b) if

$$
f\left(x_{2}\right)<f\left(x_{1}\right)
$$

whenever $a<x_{1}<x_{2}<b$.
Increasing / decreasing test
(a) If $f^{\prime}(x)>0$ on an interval, then f is increasing on that interval
(b) If $f^{\prime}(x)<0$ on an interval, then f is decreasing on that interval

To find intervals on which a function is increasing or decreasing, we will construct a sign chart for $f^{\prime}(x)$ to determine which values of x make $f^{\prime}(x)>0$ and which values make $f^{\prime}(x)<0$.

Example 5. Find the critical values of f, the intervals on which f is increasing, and those on which f is decreasing, for

$$
f(x)=x^{4}-18 x^{2}
$$

Definition. A function f has a local maximum (or relative maximum) at c if $f(c) \geq f(x)$ when x is near c. [This means that $f(c) \geq f(x)$ for all x in some open interval containing $c]$. Similarly, f has a local minimum at c if $f(c) \leq f(x)$ when x is near c. The quantity $f(c)$ is called a local extremum if it either a local maximum or a local minimum.

Example 5. Given the graph of the function f.

(a) Identify intervals on which $f(x)$ is increasing. Is decreasing.
(b) Identify the x coordinates of the points where $f(x)$ has a local maximum. A local minimum.

Fermat's theorem If f has a local maximum or minimum at c, and if $f^{\prime}(c)$ exists, then $f^{\prime}(c)=0$

The first derivative test Suppose that c is a critical number of a continuous function f.
(a) If f^{\prime} changes from positive to negative at c, then f has a local max at c.
(b) If f^{\prime} changes from negative to positive at c, then f has a local \min at c.
(c) If f^{\prime} does not change sign c, then f has a no local max or min at c.

Example 6. Given the graph of $f^{\prime}(x)$.

(a) Identify intervals on which $f(x)$ is increasing. Is decreasing.
(b) Identify the x coordinates of the points where $f(x)$ has a local maximum. A local minimum.

Example 7. Find the critical values, the intervals on which $f(x)$ is increasing, decreasing, and the local extrema.

Theorem. If $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}, a_{n} \neq 0$, is an n-th degree polynomial, then f has at most $n x$ intercepts and at most $n-1$ local extrema.

