Math 142, 511, 516, 517, Spring 2010
Lecture 12.

3/2/2010

Homework \#16 (Section 4-7) is due Thursday, March 4, 11:55 PM.

The due date for the Homework \#17 (Section 5-1) and the Homework \#18 (Section 5-2) is moved to Monday, March 8, 11:55 PM.

Quiz 6 will be held on Thursday, March 4. It will cover Sections 4-7 and 5-1.

Section 5-1. First derivative and graphs.

Definition. The values of x in the domain of f where $f^{\prime}(x)=0$ or where $f^{\prime}(x)$ does not exist are called the critical values of f.

Definition. The function f is increasing on an interval (a, b) if $f\left(x_{2}\right)>f\left(x_{1}\right)$ whenever $a<x_{1}<x_{2}<b$, and f is decreasing on (a, b) if $f\left(x_{2}\right)<f\left(x_{1}\right)$ whenever $a<x_{1}<x_{2}<b$.

Increasing / decreasing test
(a) If $f^{\prime}(x)>0$ on an interval, then f is increasing on that interval
(b) If $f^{\prime}(x)<0$ on an interval, then f is decreasing on that interval

To find intervals on which a function is increasing or decreasing, we will construct a sign chart for $f^{\prime}(x)$ to determine which values of x make $f^{\prime}(x)>0$ and which values make $f^{\prime}(x)<0$.

Definition. A function f has a local maximum at c if $f(c) \geq f(x)$ when x is near c. Similarly, f has a local minimum at c if $f(c) \leq f(x)$ when x is near c. The quantity $f(c)$ is called a local extremum if it either a local maximum or a local minimum.

Example 1. Given the graph of the function f.

(a) What are the x-coordinate(s) of the points where $f^{\prime}(x)$ does not exist?
(b) Identify intervals on which $f(x)$ is increasing. Is decreasing.
(c) Identify the x coordinates of the points where $f(x)$ has a local maximum. A local minimum.

Fermat's theorem If f has a local maximum or minimum at c, and if $f^{\prime}(c)$ exists, then $f^{\prime}(c)=0$

The first derivative test Suppose that c is a critical number of a continuous function f.
(a) If f^{\prime} changes from positive to negative at c, then f has a local \max at c.
(b) If f^{\prime} changes from negative to positive at c, then f has a local \min at c.
(c) If f^{\prime} does not change sign at c, then f has a no local max or \min at c.

Example 2. Find the critical values of f, the intervals on which f is increasing, the intervals on which f is decreasing, and the local extrema for

$$
f(x)=2 \sqrt[3]{x^{2}-4}
$$

Do not graph.

Example 3. Given the graph of $f^{\prime}(x)$.

(a) Identify intervals on which f is increasing. Is decreasing.
(b) Identify the x coordinates of the points where f has a local maximum. A local minimum.

Section 5-2. Second derivative and graphs.

Definition. The graph of the function f is concave upward (CU) on the interval (a, b) if $f^{\prime}(x)$ is increasing on (a, b) and is concave downward (CD) on the interval (a, b) if $f^{\prime}(x)$ is decreasing on (a, b)

Definition. For $y=f(x)$, the second derivative of f, provided that it exists, is

$$
f^{\prime \prime}(x)=\frac{d}{d x} f^{\prime}(x)
$$

Other notation for $f^{\prime \prime}(x)$ are

$$
\frac{d^{2} y}{d x^{2}} \quad y^{\prime \prime}
$$

Example 4. Find $f^{\prime \prime}$ for
(a) $f(x)=-6 x^{-2}+12 x^{-3}$,
(b) $f(x)=x e^{x}$,
(c) $f(x)=2 \sqrt[3]{x^{2}-4}$.

Definition. An inflection point is a point on the graph of the function where the concavity changes.

Example 5. Given the graph of $f^{\prime}(x)$.

(a) Identify intervals on which f is concave upward. Concave downward.
(b) Find the x-coordinates of inflection points.

Concavity test

(a) If $f^{\prime \prime}(x)>0$ on an interval, then f is CU on this interval.
(b) If $f^{\prime \prime}(x)<0$ on an interval, then f is CD on this interval.

The second derivative test Suppose $f^{\prime \prime}$ is continuous near c.
(a) If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)>0$, then f has a local min at c.
(b) If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)<0$, then f has a local max at c.

If $y=f(x)$ is continuous on (a, b) and has an inflection point at $x=c$, then either $f^{\prime \prime}(c)=0$ or $f^{\prime \prime}(c)$ does not exist.

Example 5. Find inflection points and the intervals of which the graph of $f(x)=x^{4}-2 x^{3}-36 x+12$ is CU.

