Math 141, 511, 516, 517, Spring 2010
Lecture 16

03/30/2010

The Math 142 help session on Thursday, Apr. 1, is cancelled.

Homework \#22 (Section 6-1)
Homework \#23 (Section 6-2)
Homework \#24 (Section 6-4)
are due Thursday, April 8, 11:55 PM.

Chapter 6. Integration

Section 6-1 Antiderivatives and indefinite integrals.
Definition Function $F(x)$ is called an antiderivative of $f(x)$ if $F^{\prime}(x)=f(x)$.
Theorem If F is an antiderivative of f on an interval l, then the most general antiderivative of f on l is

$$
F(x)+C
$$

where C is a constant.
Example 1. Find the general antiderivative of the function
$f(t)=\frac{t^{2}+3 t+2}{t}$

Indefinite integrals: formulas and properties.
The symbol

$$
\int f(x) d x
$$

is called the indefinite integral and represents the family of all antiderivatives of $f(x)$.

$$
\int f(x) d x=F(x)+C \quad \text { if } \quad F^{\prime}(x)=f(x)
$$

The symbol \int is called an integral sign, $f(x)$ is called the integrand. The symbol $d x$ indicates that the antidifferentiation is performed with respect to the variable $x . C$ is called the constant of integration.
The procedure of evaluating an integral is called integration.

Table of indefinite integrals.

1. $\int a d x=a x+C, a$ is a constant
2. $\int x^{n} d x=\frac{x^{n+1}}{n+1}+C, n \neq-1$
3. $\int \frac{d x}{x}=\ln |x|+C$
4. $\int \mathrm{e}^{x} d x=\mathrm{e}^{x}+C$

Properties of indefinite integrals.
For k a constant,

1. $\int k f(x) d x=k \int f(x) d x$
2. $\int(f(x) \pm g(x)) d x=\int f(x) d x \pm \int g(x) d x$

Example 2. Find the indefinite integral.
(a) $\int t^{2} d t$
(b) $\int\left(x^{2}-x+4\right) d x$
(c) $\int x^{2}\left(x^{3}-2 x+1\right) d x$
(d) $\int\left(x^{2}-3\right)\left(1+x^{3}\right) d x$
(e) $\int \frac{5}{\sqrt[3]{t}} d t$
(f) $\int \frac{1-y^{2}}{y^{3}} d y$
(g) $\int\left(\frac{2}{\sqrt[4]{x}}-\sqrt[5]{x^{3}}\right) d x$
(h) $\int \frac{4 e^{x}-3 x^{2}}{2} d x$

Example 3. Find the equation of the curve that passes through $(-1,6)$ if the slope of the curve is given by $\frac{d y}{d x}=4 x^{3}+2 x$ at any point x.

Example 4. The marginal average cost of producing x sports watches is given by

$$
\bar{C}^{\prime}(x)=-\frac{1000}{x^{2}}, \quad \bar{C}(100)=25
$$

where $\bar{C}(x)$ is the average cost in dollars. Find the average cost function and the cost function.

Section 6-2. Integration by substituting.

Reversing the chain rule.

$$
\int f^{\prime}(g(x)) g^{\prime}(x) d x=f(g(x))+C
$$

General indefinite integral formulas.

1. $\int[f(x)]^{n} f^{\prime}(x) d x=\frac{[f(x)]^{n+1}}{n+1}+C, \quad n \neq-1$.
2. $\int e^{f(x)} f^{\prime}(x) d x=e^{f(x)}+C$
3. $\int \frac{1}{f(x)} f^{\prime}(x) d x=\ln |f(x)|+C$.

Example 5. Find each indefinite integral.
(a) $\int\left(x^{3}+4\right)^{-2} x^{2} d x$
(b) $\int x e^{x^{2}} d x$
(c) $\int \frac{x}{2-x^{2}} d x$

