Math 141, 511, 516, 517, Spring 2010 Lecture 19

04/08/2010

```
Homework #22 (Section 6-1)
Homework #23 (Section 6-2)
Homework #24 (Section 6-4)
are due Thursday, April 8, 11:55 PM.
```

```
Homework #25 (Section 6-5)
Homework #26 (Section 7-1)
Homework #27 (Section 7-2)
are due Thursday, April 15, 11:55 PM.
```

Chapter 7. Additional integral topics. Section 7-1. Area between curves.

Consider the region S that lies between two curves y = f(x) and y = g(x) and between the vertical lines x = a and x = b, where f and g are continuous functions and $f(x) \ge g(x)$ for all x in [a, b].

Example 1. Find the area of the region bounded by

1.
$$y = x^{2} + 2$$
, $y = 0$, $x = 0$, $x = 4$
2. $y = x^{2} - 3$, $y = 2x + 5$
3. $y = x^{3} - 6x^{2} + 9x$, $y = x$.

Section 7-2. Applications in business and economics.

Consumers' and producers' surplus.

Let p = D(x) be the price-demand equation for a product, where x is the number of units of the product that consumers will purchase at a price of \$p per unit. Suppose that \bar{p} , is the current price and \bar{x} is the number of units that can be sold at that price.

Definition. Consumers' Surplus If (\bar{x}, \bar{p}) is a point on the graph of the price-demand equation p = D(x) for a particular product, then the **consumers' surplus CS** at a price level of \bar{p} is

$$CS = \int_{0}^{\bar{x}} [D(x) - \bar{p}] dx$$

which is the area between $p = \bar{p}$ and p = D(x) from x = 0 to $x = \bar{x}$.

The consumers' surplus represents the total savings to consumers who are willing to pay more that \bar{p} for the product, but are still able to buy the product for \bar{p} . **Example 2.** Find the consumers' surplus at a price level of $\bar{p} =$ \$120 for the price-demand equation

$$p = D(x) = 200 - 0.02x$$

Definition. Producers' surplus.

If (\bar{x}, \bar{p}) is a point on the graph of the price-supply equation p = S(x), then the **producers' surplus PS** at a price level of \bar{p} is

$$PS = \int_{0}^{\bar{x}} [\bar{p} - S(x)] dx$$

which is the area between $p = \overline{p}$ and p = S(x) from x = 0 to $x = \overline{x}$.

The producers' surplus represents the total gain to producers who are willing to supply units at a lower price that \bar{p} but are still able to supply units at \bar{p} .

Example 3. Find the producers' surplus at a price level of $\bar{p} = 55 for the price-supply equation

$$p = S(x) = 15 + 0.1x + 0.003x^2$$

If p = D(x) and p = S(x) are the price-demand and price-supply equations, respectively, for a product and if (\bar{x}, \bar{p}) is the point of intersection of these equations, then \bar{p} is called the **equilibrium price** and \bar{x} is called the **equilibrium quantity**. If the price stabilizes at the equilibrium price \bar{p} , then this is the price level that will determine both the consumers' surplus and the producers' surplus.

Example 4. Find the equilibrium price and then find the consumers' surplus and producers' surplus at the equilibrium price level if

$$p = D(x) = 50 - 0.1x, \quad p = S(x) = 11 + 0.05x.$$