Math 141, 511, 516, 517, Spring 2010
Lecture 21

04/15/2010

Homework \#25 (Section 6-5)
Homework \#26 (Section 7-1)
Homework \#27 (Section 7-2)
are due Thursday, April 15, 11:55 PM.

Homework \#28 (Section 8-1)
Homework \#29 (Section 8-2)
Homework \#30 (Section 8-3)
are due Thursday, April 22, 11:55 PM.
Quiz 12 is due Thursday, April 22.

Test 3 will be held on Thursday, April 22. It will cover sections 6-1, 6-2, 6-4, 6-5, 7-1, 7-2 (Topic Consumers' and Producers' Surplus), 8-1 - 8-3.

Section 8-2. Partial derivatives.

If $z=f(x, y)$, then the partial derivative of f with respect to x, is defined by

$$
\frac{\partial z}{\partial x}=f_{x}=f_{x}(x, y)=\lim _{h \rightarrow 0} \frac{f(x+h, y)-f(x, y)}{h}
$$

the partial derivative of f with respect to y, is defined by

$$
\frac{\partial z}{\partial y}=f_{y}=f_{y}(x, y)=\lim _{k \rightarrow 0} \frac{f(x, y+k)-f(x, y)}{k}
$$

Example 1. Find the indicated partial derivative for the following functions.

1. $f_{x}(x, y)$ if $f(x, y)=4 x-3 y+5$
2. $f_{y}(x, y)$ if $f(x, y)=x^{2}-3 x y-4 y^{2}$
3. f_{x} if $f(x, y)=(5 x+2 y)^{8}$

Example 2. A company spends $\$ x$ per week on newspapers advertising and \$y per week on televisions advertising. Its weekly sales were found to be given by

$$
S(x, y)=10 x^{0.2} y^{0.8}
$$

Find $S_{x}(3000,2000)$.
Second-order partial derivatives. If $z=f(x, y)$, then

$$
\begin{aligned}
& f_{x x}=f_{x x}(x, y)=\frac{\partial^{2} z}{\partial x^{2}}=\frac{\partial}{\partial x}\left(\frac{\partial z}{\partial x}\right) \\
& f_{y y}=f_{y y}(x, y)=\frac{\partial^{2} z}{\partial y^{2}}=\frac{\partial}{\partial y}\left(\frac{\partial z}{\partial y}\right) \\
& f_{x y}=f_{x y}(x, y)=\frac{\partial^{2} z}{\partial x \partial y}=\frac{\partial}{\partial y}\left(\frac{\partial z}{\partial x}\right)=\frac{\partial}{\partial x}\left(\frac{\partial z}{\partial y}\right)
\end{aligned}
$$

Example 3. Find $f_{x}, f_{y}, f_{x x}, f_{y y}$ and $f_{x y}$ for the function

$$
f(x, y)=x^{3} \ln y+4 y^{2} e^{x}
$$

