Math 141, 511, 516, 517, Spring 2010
Lecture 22

04/20/2010

Homework \#28 (Section 8-1)
Homework \#29 (Section 8-2)
Homework \#30 (Section 8-3)
are due Thursday, April 22, 11:55 PM.

Quiz 12 is due Thursday, April 22.

Test 3 will be held on Thursday, April 22. It will cover sections 6-1, 6-2, 6-4, 6-5, 7-1, 7-2 (Topic Consumers' and Producers' Surplus), 8-1-8-3.

The last day when you can make up quizzes or tests is Tuesday, May 4.

Section 8-3. Maxima and minima

We say that $f(a, b)$ is a local maximum if there exists a circular region in the domain of f with (a, b) as the center, such that

$$
f(a, b) \geq f(x, y)
$$

for all (x, y) in the region. Similarly, we say that $f(a, b)$ is a local minimum if there exists a circular region in the domain of f with (a, b) as the center, such that

$$
f(a, b) \leq f(x, y)
$$

for all (x, y) in the region.
Theorem. Let $f(a, b)$ be a local extremum for the function f. If both f_{x} and f_{y} exist at (a, b), then

$$
f_{x}(a, b)=0 \quad \text { and } \quad f_{y}(a, b)=0
$$

Theorem gives us necessary (but not sufficient) conditions for $f(a, b)$ to be a local extremum. We thus find all points (a, b) such that $f_{x}(a, b)=0$ and $f_{y}(a, b)=0$ and test further to determine whether $f(a, b)$ is a local extremum or a saddle point.

Second-derivative test for local extrema. For $z=f(x, y)$ if 1. $f_{x}(a, b)=0 \quad$ and $f_{y}(a, b)=0$
2. All second-order partial derivatives of f exist in some circular region containing (a, b) as center.
3. $A=f_{x x}(a, b), B=f_{x y}(a, b), C=f_{y y}(a, b)$

Then
Case 1. If $A C-B^{2}>0$ and $A<0$, then $f(a, b)$ is a local maximum.
Case 2. If $A C-B^{2}>0$ and $A>0$, then $f(a, b)$ is a local minimum.
Case 3. If $A C-B^{2}<0$, then f has a saddle point at (a, b).
Case 4. If $A C-B^{2}=0$, the test fails.
Example Find local extrema for the function

$$
f(x, y)=2 x^{2}-x y+y^{2}-x-5 y+8
$$

