Sample problems for the final exam

Any problem may be altered or replaced by a different one!

1. Find a quadratic polynomial p(x) such that p(-1) = p(3) = 6 and p'(2) = p(1).

2. Let

$$A = \begin{pmatrix} 1 & 0 & 1 \\ 3 & 3 & 4 \\ 2 & 2 & 3 \end{pmatrix}.$$

- (a) Evaluate the determinant of the matrix A.
- (b) Find the inverse matrix A^{-1} .
- 3. Let $\mathbf{v}_1 = (1, 1, 1)$, $\mathbf{v}_2 = (1, 0, 1)$, $\mathbf{v}_3 = (0, 1, 1)$, and let $\mathbf{u}_1 = (1, 1, 0)$, $\mathbf{u}_2 = (1, 0, 2)$, $\mathbf{u}_3 = (2, 1, 1)$. Find the transition matrix corresponding to the change of basis from $[\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3]$ to $[\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3]$.
- 4. Consider a linear operator $L: \mathbb{R}^3 \to \mathbb{R}^3$ given by

$$L(\mathbf{x}) = (\mathbf{x} \cdot \mathbf{v}_1)\mathbf{v}_2$$
, where $\mathbf{v}_1 = (1, 2, -1)$, $\mathbf{v}_2 = (2, 2, 1)$.

- (a) Find the matrix of the operator L.
- (b) Find bases for the range and the kernel of L.
- 5. Let V be a subspace of \mathbb{R}^4 spanned by vectors $\mathbf{x}_1 = (1, 1, 0, 0)$, $\mathbf{x}_2 = (2, 0, -1, 1)$, and $\mathbf{x}_3 = (0, 1, 1, 0)$.
 - (a) Find the distance from the point $\mathbf{y} = (0, 0, 0, 4)$ to the subspace V.
 - (b) Find the distance from the point **y** to the orthogonal complement V^{\perp} .

6. Let
$$B = \begin{pmatrix} 1 & 0 & 1 \\ 1 & -1 & 1 \\ 0 & 0 & 3 \end{pmatrix}$$
.

- (a) Find all eigenvalues of the matrix B.
- (b) Find a basis for \mathbb{R}^3 consisting of eigenvectors of B.
- (c) Find an orthonormal basis for \mathbb{R}^3 consisting of eigenvectors of B.
- (d) Find a diagonal matrix D and an invertible matrix X such that $B = XDX^{-1}$.
- 7. Solve a system of differential equations

$$\begin{cases} \frac{dx}{dt} = 3x + y, \\ \frac{dy}{dt} = x + 3y \end{cases}$$

subject to the initial conditions x(0) = y(0) = 1.