Sample problems for the final exam

Any problem may be altered or replaced by a different one!

1. Find a quadratic polynomial $p(x)$ such that $p(-1)=p(3)=6$ and $p^{\prime}(2)=p(1)$.
2. Let

$$
A=\left(\begin{array}{lll}
1 & 0 & 1 \\
3 & 3 & 4 \\
2 & 2 & 3
\end{array}\right)
$$

(a) Evaluate the determinant of the matrix A.
(b) Find the inverse matrix A^{-1}.
3. Let $\mathbf{v}_{1}=(1,1,1), \mathbf{v}_{2}=(1,0,1), \mathbf{v}_{3}=(0,1,1)$, and let $\mathbf{u}_{1}=(1,1,0), \mathbf{u}_{2}=(1,0,2)$, $\mathbf{u}_{3}=(2,1,1)$. Find the transition matrix corresponding to the change of basis from $\left[\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right]$ to $\left[\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right]$.
4. Consider a linear operator $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ given by

$$
L(\mathbf{x})=\left(\mathbf{x} \cdot \mathbf{v}_{1}\right) \mathbf{v}_{2}, \quad \text { where } \mathbf{v}_{1}=(1,2,-1), \quad \mathbf{v}_{2}=(2,2,1)
$$

(a) Find the matrix of the operator L.
(b) Find bases for the range and the kernel of L.
5. Let V be a subspace of \mathbb{R}^{4} spanned by vectors $\mathbf{x}_{1}=(1,1,0,0), \mathbf{x}_{2}=(2,0,-1,1)$, and $\mathrm{x}_{3}=(0,1,1,0)$.
(a) Find the distance from the point $\mathbf{y}=(0,0,0,4)$ to the subspace V.
(b) Find the distance from the point \mathbf{y} to the orthogonal complement V^{\perp}.
6. Let $B=\left(\begin{array}{rrr}1 & 0 & 1 \\ 1 & -1 & 1 \\ 0 & 0 & 3\end{array}\right)$.
(a) Find all eigenvalues of the matrix B.
(b) Find a basis for \mathbb{R}^{3} consisting of eigenvectors of B.
(c) Find an orthonormal basis for \mathbb{R}^{3} consisting of eigenvectors of B.
(d) Find a diagonal matrix D and an invertible matrix X such that $B=X D X^{-1}$.
7. Solve a system of differential equations

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=3 x+y \\
\frac{d y}{d t}=x+3 y
\end{array}\right.
$$

subject to the initial conditions $x(0)=y(0)=1$.

