Answers for the sample problems for Test 1

1. $\left(-1, \frac{4}{3}, \frac{2}{3}\right)$
2. $\operatorname{det}(A)=-1$.
3. $A^{-1}=\left(\begin{array}{rrr}3 / 14 & -3 / 7 & 1 / 7 \\ 1 / 7 & 5 / 7 & -4 / 7 \\ -1 / 14 & 1 / 7 & 2 / 7\end{array}\right)$
4. (a) yes
(b) no
(c) yes
(d) no
5. (a) rank of $\mathrm{B}=3$
nullity of $\mathrm{B}=4-\operatorname{rank}$ of $\mathrm{B}=4-3=1$
(b) Vectors $\mathbf{v}_{1}=(1,1,2,-1), \mathbf{v}_{2}=(0,1,-4,-1)$, and $\mathbf{v}_{3}=(0,0,1,0)$ form the basis for the row space for B.

One of the vectors $\mathbf{e}_{1}=(1,0,0,0), \mathbf{e}_{2}=(0,1,0,0), \mathbf{e}_{4}=(0,0,0,1)$ can be chosen to extend the basis $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ to a basis of \mathbb{R}^{4}.
6. Since $W\left[f_{1}, f_{2}, f_{3}\right](x)=2 x^{2}+3 x+2$, and it is never zero on \mathbb{R}, functions $f_{1}(x), f_{2}(x)$ and $f_{3}(x)$ are linearly independent.
7. Assume the contrary: neither of the subspaces V and W is contained in the other. Then there exist vectors $\mathbf{v} \in V$ and $\mathbf{w} \in W$ such that $\mathbf{v} \notin W$ and $\mathbf{w} \notin V$. Let $\mathbf{x}=\mathbf{v}+\mathbf{w}$. Since $\mathbf{v}, \mathbf{w} \in V \cup W$ and $V \cup W$ is a subspace, it follows that $\mathbf{x} \in V \cup W$. That is, $\mathbf{x} \in V$ or $\mathbf{x} \in W$. However in the case $\mathbf{x} \in V$ we have $\mathbf{w}=\mathbf{x}-\mathbf{v} \in V$, while in the case $\mathbf{x} \in W$ we have $\mathbf{v}=\mathbf{x}-\mathbf{w} \in W$. In either case we arrive at a contradiction. Thus the initial assumption was wrong. That is, one of the subspaces V and W does contain the other.

