Sample problems for Test II

1. Let L be the linear operator on P_{3} defined by

$$
L(p(x))=x p^{\prime}(x)+p^{\prime \prime}(x)
$$

(a) Find the matrix A representing L with respect to $\left[1, x, x^{2}\right]$.
(b) Find the matrix B representing L with respect to $\left[1, x, 1+x^{2}\right]$.
(c) Find the matrix S such that $B=S^{-1} A S$
2. Find the distance from the point $(2,1,-2)$ to the plane $6(x-1)+2(y-3)+3(z+4)=0$.
3. Let V be a subspace spanned by vectors $\mathbf{x}_{1}=(1,1,1,1)$ and $\mathbf{x}_{2}=(1,0,3,0)$.
(a) Find an orthonormal basis for V.
(b) Find an orthonormal basis for V^{\perp}.
4. Compute $\|x\|_{1},\|x\|_{2}$, and $\|x\|_{\infty}$ for the vector $\mathbf{x}=(-1,3,-4)$.

5. Find the linear polynomial which is the best least squares fit to the following data | x | -2 | -1 | 0 | 1 | 2 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $f(x)$ | -3 | -2 | 1 | 2 | 5 |
6. Let Π be the plane spanned by the vectors $\mathbf{x}_{1}=(1,1,0)$ and $\mathbf{x}_{2}=(0,1,1)$. Find the orthogonal projection of the vector $\mathbf{y}=(-2,1,4)$ onto Π.
