1. (a.) 4
(b.)
$$\log_2 6$$

2. $f'(x) = \frac{2x}{\sin^{-1}(x^2)\sqrt{1-x^4}}$
3. (a.) $f'(x) = \frac{\sqrt[3]{3x-1}(x-2)^3}{2\sqrt{x+1}} \left(\frac{1}{3x-1} + \frac{3}{x-2} - \frac{1}{2(x+1)}\right)$
(b.) $f(x) = (x+x^2)^{\tan x} \left(\sec^2 x \ln(x+x^2) + \tan x \frac{1+2x}{x+x^2}\right)$
4. (a.) $y(t) = 4000 \cdot 3^{2t}$
(b.) $4000 \cdot 3^{2/3}$
(c.) $t = \frac{1}{2} \log_3 5$
5. $\frac{3\pi}{4}$
6. (a.) If $u = \sin^{-1} x$, then $x = \sin u$

6. (a.) If $y = \sin^{-1} x$, then $x = \sin y$.

$$\frac{d}{dx}x = \frac{d}{dx}\sin y$$
$$1 = \cos y\frac{dy}{dx}$$

Then

$$\frac{dy}{dx} = \frac{1}{\cos y}$$

If $\sin y = x$, then $\cos y = \sqrt{1 - \sin^2 y} = \sqrt{1 - x^2}$. Therefore,

$$\frac{d}{dx}\sin^{-1}x = \frac{1}{\sqrt{1-x^2}}$$

(b.) If $y = \cos^{-1} x$, then $x = \cos y$.

$$\frac{d}{dx}x = \frac{d}{dx}\cos y$$
$$1 = -\sin y\frac{dy}{dx}$$

Then

$$\frac{dy}{dx} = -\frac{1}{\sin y}$$

If $\cos y = x$, then $\sin y = \sqrt{1 - \cos^2 y} = \sqrt{1 - x^2}$. Therefore,

$$\frac{d}{dx}\cos^{-1}x = -\frac{1}{\sqrt{1-x^2}}$$

(c.) If $y = \tan^{-1} x$, then $x = \tan y$.

$$\frac{d}{dx}x = \frac{d}{dx}\tan y$$
$$1 = \sec^2 y \frac{dy}{dx}$$

Then

$$\frac{dy}{dx} = \frac{1}{\sec^2 y}$$

If $\tan y = x$, then $\sec^2 y = \tan^2 y + 1 = x^2 + 1$. Therefore,

$$\frac{d}{dx}\tan^{-1}x = \frac{1}{1+x^2}$$

- 7. $f'(x) = \frac{4x}{\sqrt{1 + (\tan^{-1}(2x^2 + 3))^2} (1 + (2x^2 + 3)^2)}$
- 8. (a.) $\frac{1}{2}$
 - (b.) 0
 - (c.) 1
- 9. (a.) f is increasing on $(b, e) \cup (0, i) \cup (l, m)$. f is decreasing on $(a, b) \cup (e, 0) \cup (i, l)$.
 - (b.) f has local maxima at x = e, i. f has local minima at x = b, 0, l.
 - (c.) f is concave upward on $(a, c) \cup (f, h) \cup (k, m)$. f is concave downward on $(c, f) \cup (h, k)$.
 - (d.) f has inflection points at x = c, f, h, k.

10. The absolute maximum value is $\frac{4}{27}$; the absolute minimum value is -4.

- 11. (a.) No vertical asymptotes. Horizontal asymptote y = 0 as $x \to -\infty$.
 - (b.) f is increasing on $(-\infty, -2) \cup (0, \infty)$. f is decreasing on (-2, 0).
 - (c.) f has a local max at x = -2. No absolute max. f has the absolute min at x = 0.
 - (d.) f is CU on $(-\infty, -2 \sqrt{2}) \cup (-2 + \sqrt{2}, \infty)$. f is CD on $(-2 \sqrt{2}, -2 + \sqrt{2})$.
 - (e.) f has inflection points at $x = -2 \sqrt{2}, -2 + \sqrt{2}$.

12.
$$r = h = \sqrt[3]{\frac{V}{\pi}}$$
.
13. (a.) $F(x) = \frac{3}{7}x^{7/3} + x + C$
(b.) $F(x) = -\cos x + 2\tan^{-1}x + 3\sin^{-1}x + C$
14. $s(t) = \frac{t^4}{12} - \frac{t^3}{6} + t$
15. $\vec{r}(t) = <\frac{t^3}{3} + t + 1, \frac{3t^2}{2} - t + 2 >$
16. 40