1. (a.) 4
(b.) $\log _{2} 6$
2. $f^{\prime}(x)=\frac{2 x}{\sin ^{-1}\left(x^{2}\right) \sqrt{1-x^{4}}}$
3. (a.) $f^{\prime}(x)=\frac{\sqrt[3]{3 x-1}(x-2)^{3}}{2 \sqrt{x+1}}\left(\frac{1}{3 x-1}+\frac{3}{x-2}-\frac{1}{2(x+1)}\right)$
(b.) $f(x)=\left(x+x^{2}\right)^{\tan x}\left(\sec ^{2} x \ln \left(x+x^{2}\right)+\tan x \frac{1+2 x}{x+x^{2}}\right)$
4. (a.) $y(t)=4000 \cdot 3^{2 t}$
(b.) $4000 \cdot 3^{2 / 3}$
(c.) $t=\frac{1}{2} \log _{3} 5$
5. $\frac{3 \pi}{4}$
6. (a.) If $y=\sin ^{-1} x$, then $x=\sin y$.

$$
\begin{gathered}
\frac{d}{d x} x=\frac{d}{d x} \sin y \\
1=\cos y \frac{d y}{d x}
\end{gathered}
$$

Then

$$
\frac{d y}{d x}=\frac{1}{\cos y}
$$

If $\sin y=x$, then $\cos y=\sqrt{1-\sin ^{2} y}=\sqrt{1-x^{2}}$. Therefore,

$$
\frac{d}{d x} \sin ^{-1} x=\frac{1}{\sqrt{1-x^{2}}}
$$

(b.) If $y=\cos ^{-1} x$, then $x=\cos y$.

$$
\begin{gathered}
\frac{d}{d x} x=\frac{d}{d x} \cos y \\
1=-\sin y \frac{d y}{d x}
\end{gathered}
$$

Then

$$
\frac{d y}{d x}=-\frac{1}{\sin y}
$$

If $\cos y=x$, then $\sin y=\sqrt{1-\cos ^{2} y}=\sqrt{1-x^{2}}$. Therefore,

$$
\frac{d}{d x} \cos ^{-1} x=-\frac{1}{\sqrt{1-x^{2}}}
$$

(c.) If $y=\tan ^{-1} x$, then $x=\tan y$.

$$
\begin{gathered}
\frac{d}{d x} x=\frac{d}{d x} \tan y \\
1=\sec ^{2} y \frac{d y}{d x}
\end{gathered}
$$

Then

$$
\frac{d y}{d x}=\frac{1}{\sec ^{2} y}
$$

If $\tan y=x$, then $\sec ^{2} y=\tan ^{2} y+1=x^{2}+1$. Therefore,

$$
\frac{d}{d x} \tan ^{-1} x=\frac{1}{1+x^{2}}
$$

7. $f^{\prime}(x)=\frac{4 x}{\sqrt{1+\left(\tan ^{-1}\left(2 x^{2}+3\right)\right)^{2}}\left(1+\left(2 x^{2}+3\right)^{2}\right)}$
8. (a.) $\frac{1}{2}$
(b.) 0
(c.) 1
9. (a.) f is increasing on $(b, e) \cup(0, i) \cup(l, m)$. f is decreasing on $(a, b) \cup(e, 0) \cup(i, l)$.
(b.) f has local maxima at $x=e, i . f$ has local minima at $x=b, 0, l$.
(c.) f is concave upward on $(a, c) \cup(f, h) \cup(k, m)$. f is concave downward on $(c, f) \cup(h, k)$.
(d.) f has inflection points at $x=c, f, h, k$.
10. The absolute maximum value is $\frac{4}{27}$; the absolute minimum value is -4 .
11. (a.) No vertical asymptotes. Horizontal asymptote $y=0$ as $x \rightarrow-\infty$.
(b.) f is increasing on $(-\infty,-2) \cup(0, \infty)$. f is decreasing on $(-2,0)$.
(c.) f has a local max at $x=-2$. No absolute max. f has the absolute min at $x=0$.
(d.) f is CU on $(-\infty,-2-\sqrt{2}) \cup(-2+\sqrt{2}, \infty)$. f is CD on $(-2-\sqrt{2},-2+\sqrt{2})$.
(e.) f has inflection points at $x=-2-\sqrt{2},-2+\sqrt{2}$.
12. $r=h=\sqrt[3]{\frac{V}{\pi}}$.
13. (a.) $F(x)=\frac{3}{7} x^{7 / 3}+x+C$
(b.) $F(x)=-\cos x+2 \tan ^{-1} x+3 \sin ^{-1} x+C$
14. $s(t)=\frac{t^{4}}{12}-\frac{t^{3}}{6}+t$
15. $\vec{r}(t)=<\frac{t^{3}}{3}+t+1, \frac{3 t^{2}}{2}-t+2>$
16. 40
