Chapter 1. Introduction to vectors and vector functions

Section 1.1 Vectors
Definition. A two-dimensional vector is an ordered pair $\vec{a}=<a_{1}, a_{2}>$ of real numbers. The numbers a_{1} and a_{2} are called the components of \vec{a}.

A representation of the vector $\vec{a}=<a_{1}, a_{2}>$ is a directed line segment $\overrightarrow{A B}$ from any point $A(x, y)$ to the point $B\left(x+a_{1}, y+a_{2}\right)$.

A particular representation of $\vec{a}=<a_{1}, a_{2}>$ is the directed line segment $\overrightarrow{O P}$ from the origin to the point $P\left(a_{1}, a_{2}\right)$, and $\vec{a}=<a_{1}, a_{2}>$ is called the position vector of the point $P\left(a_{1}, a_{2}\right)$.

Given the points $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$, then

$$
\overrightarrow{A B}=<x_{2}-x_{1}, y_{2}-y_{1}>
$$

Example 1. Find a vector \vec{a} with representation given by the directed line segment $\overrightarrow{A B}$. Draw $\overrightarrow{A B}$ and the equivalent representation starting at the origin.
(a) $A(1,2), B(3,3)$;
(b) $A(1,-2), B(-2,3)$.

The magnitude (length) $|\vec{a}|$ of \vec{a} is the length of any its representation.
The length of $\vec{a}=<a_{1}, a_{2}>$ is

$$
|\vec{a}|=\sqrt{a_{1}^{2}+a_{2}^{2}}
$$

The length of the vector $\overrightarrow{A B}$ from $A\left(x_{1}, y_{1}\right)$ to $B\left(x_{2}, y_{2}\right)$ is

$$
|\overrightarrow{A B}|=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

The only vector with length 0 is the zero vector $\overrightarrow{0}=<0,0>$. This vector is the only vector with no specific direction.

Example 2. Find the length of the vectors from Example 1.

Vector addition If $\vec{a}=<a_{1}, a_{2}>$ and $\vec{b}=<b_{1}, b_{2}>$, then the vector $\vec{a}+\vec{b}$ is defined by $\vec{a}+\vec{b}=<a_{1}+b_{1}, a_{2}+b_{2}>$.

Triangle Law

Parallelogram Law

Multiplication of a vector by a scalar If c is a scalar and $\vec{a}=<a_{1}, a_{2}>$, then the vector is defined by

$$
c \vec{a}=<c a_{1}, c a_{2}>
$$

$$
|c \vec{a}|=c|\vec{a}|
$$

Two vectors \vec{a} and \vec{b} are called parallel if $\vec{b}=c \vec{a}$ for some scalar c.
By the difference of two vectors, we mean

$$
\vec{a}-\vec{b}=\vec{a}+(-\vec{b})
$$

so, if $\vec{a}=<a_{1}, a_{2}>$ and $\vec{b}=<b_{1}, b_{2}>$, then $\vec{a}-\vec{b}=<a_{1}-b_{1}, a_{2}-b_{2}>$.

Example 3. If $\vec{a}=<-1,2>$ and $\vec{b}=<-2,-1>$, find (a) $\vec{a}+\vec{b}$
(b) $1 / 2 \vec{b}$
(c) $\vec{a}-\vec{b}$
(d) $|2 \vec{a}-5 \vec{b}|$

Properties of vectors. If \vec{a}, \vec{b}, and \vec{c} are vectors and k and m are scalars, then

1. $\vec{a}+\vec{b}=\vec{b}+\vec{a}$
2. $\vec{a}+(\vec{b}+\vec{c})=(\vec{a}+\vec{b})+\vec{c}$
3. $\vec{a}+\overrightarrow{0}=\vec{a}$
4. $\vec{a}+(-\vec{a})=\overrightarrow{0}$
5. $k(\vec{a}+\vec{b})=k \vec{a}+k \vec{b}$
6. $(k+m) \vec{a}=k \vec{a}+m \vec{a}$
7. $(k m) \vec{a}=k(m \vec{a})$
8. $1 \vec{a}=\vec{a}$

Let $\vec{\imath}=<1,0>$ and $\vec{\jmath}=<0,1>$.

$$
|\vec{\imath}|=|\vec{\jmath}|=1
$$

$\vec{a}=<a_{1}, a_{2}>=a_{1} \vec{\imath}+a_{2} \vec{\jmath}$

Example 4. Express $\vec{a}=<2,4>, \vec{b}=<-1,3>$, and $2 \vec{a}+\vec{b}$ in terms of $\vec{\imath}$ and $\vec{\jmath}$.

A unit vector is a vector whose length is 1 .
A vector

$$
\vec{u}=\frac{1}{|\vec{a}|} \vec{a}=\left\langle\frac{a_{1}}{|\vec{a}|}, \frac{a_{2}}{|\vec{a}|}\right\rangle
$$

is a unit vector that has the same direction as $\vec{a}=<a_{1}, a_{2}>$.
Example 5. Given vectors $\vec{a}=\vec{\imath}-2 \vec{\jmath}, \vec{b}=<-2,3>$. Find a unit vector \vec{u} that has the same direction as $2 \vec{b}+\vec{a}$.

Direction angles and direction cosines. The direction angles of a nonzero vector \vec{a} are the angles α and β in the interval $[0, \pi]$ that \vec{a} makes with the positive $x-$ and $y-$ axes. The cosines of these direction angles, $\cos \alpha$ and $\cos \beta$ are called the direction cosines of the vector \vec{a}.

$$
\cos \alpha=\frac{a_{1}}{|\vec{a}|}, \quad \cos \beta=\frac{a_{2}}{|\vec{a}|}, \quad \cos ^{2} \alpha+\cos ^{2} \beta=1
$$

We can write

$$
\vec{a}=<a_{1}, a_{2}>=|\vec{a}|<\cos \alpha, \cos \beta>
$$

Therefore

$$
\frac{1}{|\vec{a}|} \vec{a}=<\cos \alpha, \cos \beta>
$$

which says that the direction cosines of \vec{a} are the components of the unit vector in the direction of \vec{a}.

Example 6. Let \vec{c} be the vector obtained by rotating $\vec{a}=<1,3>$ by angle of 60 degrees in the counterclockwise direction. Compute the vector \vec{c}.

Example 7. Two forces \vec{F}_{1} and \vec{F}_{2} with magnitudes 10 lb and 12 lb act on an object at a point P as shown in the figure. Find the resultant force \vec{F} acting at P as well as its magnitude and its direction.

