Chapter 1. Introduction to vectors and vector functions Section 1.1 Vectors

Definition. A two-dimensional vector is an ordered pair $\vec{a} = \langle a_1, a_2 \rangle$ of real numbers. The numbers a_1 and a_2 are called the **components** of \vec{a} .

A representation of the vector $\vec{a} = \langle a_1, a_2 \rangle$ is a directed line segment \overrightarrow{AB} from any point A(x, y) to the point $B(x + a_1, y + a_2)$.

A particular representation of $\vec{a} = \langle a_1, a_2 \rangle$ is the directed line segment \overrightarrow{OP} from the origin to the point $P(a_1, a_2)$, and $\vec{a} = \langle a_1, a_2 \rangle$ is called the **position vector** of the point $P(a_1, a_2)$.

Given the points $A(x_1, y_1)$ and $B(x_2, y_2)$, then

$$\overrightarrow{AB} = \langle x_2 - x_1, y_2 - y_1 \rangle$$

Example 1. Find a vector \vec{a} with representation given by the directed line segment \overrightarrow{AB} . Draw \overrightarrow{AB} and the equivalent representation starting at the origin.

(a) A(1,2), B(3,3);

(b) A(1, -2), B(-2, 3).

The **magnitude (length)** $|\vec{a}|$ of \vec{a} is the length of any its representation. The length of $\vec{a} = \langle a_1, a_2 \rangle$ is

$$|\vec{a}| = \sqrt{a_1^2 + a_2^2}$$

The length of the vector \overrightarrow{AB} from $A(x_1, y_1)$ to $B(x_2, y_2)$ is

$$|\vec{AB}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

The only vector with length 0 is the **zero vector** $\vec{0} = \langle 0, 0 \rangle$. This vector is the only vector with no specific direction.

Example 2. Find the length of the vectors from Example 1.

Vector addition If $\vec{a} = \langle a_1, a_2 \rangle$ and $\vec{b} = \langle b_1, b_2 \rangle$, then the vector $\vec{a} + \vec{b}$ is defined by $\vec{a} + \vec{b} = \langle a_1 + b_1, a_2 + b_2 \rangle$.

Multiplication of a vector by a scalar If c is a scalar and $\vec{a} = \langle a_1, a_2 \rangle$, then the vector is defined by

$$c\vec{a} = \langle ca_1, ca_2 \rangle$$

 $|c\vec{a}| = c|\vec{a}|$

Two vectors
$$\vec{a}$$
 and \vec{b} are called **parallel** if $\vec{b} = c\vec{a}$ for some scalar c .

By the **difference** of two vectors, we mean

$$\vec{a} - \vec{b} = \vec{a} + (-\vec{b})$$

so, if $\vec{a} = \langle a_1, a_2 \rangle$ and $\vec{b} = \langle b_1, b_2 \rangle$, then $\vec{a} - \vec{b} = \langle a_1 - b_1, a_2 - b_2 \rangle$.

Example 3. If $\vec{a} = <-1, 2 >$ and $\vec{b} = <-2, -1 >$, find (a) $\vec{a} + \vec{b}$

(b) $1/2\vec{b}$

(c) $\vec{a} - \vec{b}$

(d) $|2\vec{a} - 5\vec{b}|$

Properties of vectors. If \vec{a} , \vec{b} , and \vec{c} are vectors and k and m are scalars, then

1.
$$\vec{a} + \vec{b} = \vec{b} + \vec{a}$$

2. $\vec{a} + (\vec{b} + \vec{c}) = (\vec{a} + \vec{b}) + \vec{c}$
3. $\vec{a} + \vec{0} = \vec{a}$
4. $\vec{a} + (-\vec{a}) = \vec{0}$
5. $k(\vec{a} + \vec{b}) = k\vec{a} + k\vec{b}$
6. $(k+m)\vec{a} = k\vec{a} + m\vec{a}$
7. $(km)\vec{a} = k(m\vec{a})$
8. $1\vec{a} = \vec{a}$

Let $\vec{i} = <1, 0 >$ and $\vec{j} = <0, 1 >$.

$$|\vec{i}| = |\vec{j}| = 1$$

 $\vec{a} = \langle a_1, a_2 \rangle = a_1 \vec{i} + a_2 \vec{j}$

Example 4. Express $\vec{a} = \langle 2, 4 \rangle$, $\vec{b} = \langle -1, 3 \rangle$, and $2\vec{a} + \vec{b}$ in terms of \vec{i} and \vec{j} .

A unit vector is a vector whose length is 1.

A vector

$$\vec{u} = \frac{1}{|\vec{a}|}\vec{a} = \left\langle \frac{a_1}{|\vec{a}|}, \frac{a_2}{|\vec{a}|} \right\rangle$$

is a unit vector that has the same direction as $\vec{a} = \langle a_1, a_2 \rangle$.

Example 5. Given vectors $\vec{a} = \vec{i} - 2\vec{j}$, $\vec{b} = \langle -2, 3 \rangle$. Find a unit vector \vec{u} that has the same direction as $2\vec{b} + \vec{a}$.

Direction angles and direction cosines. The direction angles of a nonzero vector \vec{a} are the angles α and β in the interval $[0, \pi]$ that \vec{a} makes with the positive x- and y- axes. The cosines of these direction angles, $\cos \alpha$ and $\cos \beta$ are called the **direction cosines** of the vector \vec{a} .

$$\cos \alpha = \frac{a_1}{|\vec{a}|}, \quad \cos \beta = \frac{a_2}{|\vec{a}|}, \quad \cos^2 \alpha + \cos^2 \beta = 1$$

We can write

$$\vec{a} = \langle a_1, a_2 \rangle = |\vec{a}| \langle \cos \alpha, \cos \beta \rangle$$

Therefore

$$\frac{1}{|\vec{a}|}\vec{a} = <\cos\alpha, \cos\beta >$$

which says that the direction cosines of \vec{a} are the components of the unit vector in the direction of \vec{a} .

Example 6. Let \vec{c} be the vector obtained by rotating $\vec{a} = <1,3 >$ by an angle of 60 degrees in the counterclockwise direction. Compute the vector \vec{c} .

Example 7. Two forces $\vec{F_1}$ and $\vec{F_2}$ with magnitudes 10 lb and 12 lb act on an object at a point P as shown in the figure. Find the resultant force \vec{F} acting at P as well as its magnitude and its direction.

