Section 1.3 Vector functions.

Definition. The curve of a type x = x(t), y = y(t) is called a **parametric curve** and the variable t is called a **parameter**.

Definition. Vector $\vec{r}(t) = \langle x(t), y(t) \rangle = x(t)\vec{\imath} + y(t)\vec{\jmath}$ is called the **position vector** for the point with coordinates (x(t), y(t)).

A function such as $\vec{r}(t)$, whose range is a set of vectors, is called a **vector function** of t.

Example 1.

(a.) Sketch the curve represented by the parametric equation $x(t) = \frac{1-t}{1+t}$, $y = t^2$.

(b.) Eliminate the parameter to find the Cartesian equation of the curve.

Example 2. An object is moving in the xy-plane and its position after t seconds is $\vec{r}(t) = \langle t-3, t^2-2t \rangle$.

(a.) Find the position of the object at time t=5.

(b.) At what time is the object at the point (1,8).

(c.) Does the object pass through the point (3,20).

(d.) Find an equation in x and y whose graph is the path of the object.

A line L is determined by a point P_0 on L and a direction. Let \vec{v} be a vector parallel to line L. Let P be be an arbitrary point on L and let $\vec{r_0}$ and \vec{r} be the position vectors of P and P_0 .

Then the $vector\ equation$ of line L is

$$\vec{r}(t) = \vec{r_0} + t\vec{v}$$

If $\vec{r} = \langle x(t), y(t) \rangle$, $\vec{v} = \langle a, b \rangle$ and $P(x_0, y_0)$ then parametric equations of the line L are

$$x(t) = x_0 + at, y(t) = y_0 + bt$$

Example 3. Find a vector, parametric, and Cartesian equations for the line containing the point (2,-1) and parallel to $2\vec{\imath}+3\vec{\jmath}$.

Example 4. Find a vector and parametric equations for the line passing through the points A(1,3) and B(2,-1).