Section 1.3 Vector functions.

Definition. The curve of a type $x=x(t), y=y(t)$ is called a parametric curve and the variable t is called a parameter.

Definition. Vector $\vec{r}(t)=<x(t), y(t)>=x(t) \vec{\imath}+y(t) \vec{\jmath}$ is called the position vector for the point with coordinates $(x(t), y(t))$.

A function such as $\vec{r}(t)$, whose range is a set of vectors, is called a vector function of t. Example 1.
(a.) Sketch the curve represented by the parametric equation $x(t)=\frac{1-t}{1+t}, y=t^{2}$.
(b.) Eliminate the parameter to find the Cartesian equation of the curve.

Example 2. An object is moving in the $x y$-plane and its position after t seconds is $\vec{r}(t)=<t-3, t^{2}-2 t>$.
(a.) Find the position of the object at time $t=5$.
(b.) At what time is the object at the point $(1,8)$.
(c.) Does the object pass through the point $(3,20)$.
(d.) Find an equation in x and y whose graph is the path of the object.

A line L is determined by a point P_{0} on L and a direction. Let \vec{v} be a vector parallel to line L. Let P be be an arbitrary point on L and let $\overrightarrow{r_{0}}$ and \vec{r} be the position vectors of P and P_{0}.

Then the vector equation of line L is

$$
\vec{r}(t)=\overrightarrow{r_{0}}+t \vec{v}
$$

If $\vec{r}=<x(t), y(t)>, \vec{v}=<a, b>$ and $P\left(x_{0}, y_{0}\right)$ then parametric equations of the line L are

$$
x(t)=x_{0}+a t, \quad y(t)=y_{0}+b t
$$

Example 3. Find a vector, parametric, and Cartesian equations for the line containing the point $(2,-1)$ and parallel to $2 \vec{\imath}+3 \vec{\jmath}$.

Example 4. Find a vector and parametric equations for the line passing through the points $A(1,3)$ and $B(2,-1)$.

