Chapter 2. Limits and rates of change Section 2.2. The limit of the function

Definition. We write

$$\lim_{x \to a} f(x) = L$$

and say "the limit of f(x), as x approaches a, equals L" if we can make values of f(x) arbitrary close to L by taking x to be sufficiently close to a but not equal to a.

Definition. We write

$$\lim_{x \to a^{-}} f(x) = L$$

and say the **left-handed limit of** f(x) as x approaches a (or the limit of f(x) as x approaches a from the left), equals L if we can make values of f(x) arbitrary close to L by taking x to be sufficiently close to a and x < a.

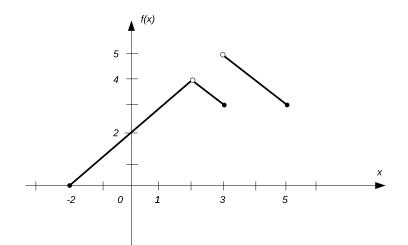
Definition. We write

$$\lim_{x \to a^+} f(x) = L$$

and say the **right-handed limit of** f(x) as x approaches a (or the limit of f(x) as x approaches a from the right), equals L if we can make values of f(x) arbitrary close to L by taking x to be sufficiently close to a and x > a.

 $\lim_{x \to a} f(x) = L \text{ if and only if } \lim_{x \to a^-} f(x) = \lim_{x \to a^+} f(x) = L$

Example 1. Given the graph of the function f



Find:

- (a.) $\lim_{x \to 1} f(x)$
- (b.) $\lim_{x \to 2^+} f(x)$
- (c.) $\lim_{x \to 2^-} f(x)$
- (d.) $\lim_{x \to 3^+} f(x)$

(e.) $\lim_{x \to 3^{-}} f(x)$

Definition. Let f be a function defined on both sides of a, except, possibly at a itself. Then

$$\lim_{x \to a} f(x) = \infty$$

means that the values of f(x) can be made arbitrary large by taking x to be sufficiently close to a but not equal to a.

Definition. Let f be a function defined on both sides of a, except, possibly at a itself. Then

$$\lim_{x \to a} f(x) = -\infty$$

means that the values of f(x) can be made arbitrary large negative by taking x to be sufficiently close to a but not equal to a.

Definition. The line x = a is called a **vertical asymptote** of the curve y = f(x) if at least one of the following statements is true:

$$\lim_{x \to a} f(x) = \infty \quad \lim_{x \to a^+} f(x) = \infty \quad \lim_{x \to a^-} f(x) = \infty$$
$$\lim_{x \to a} f(x) = -\infty \quad \lim_{x \to a^+} f(x) = -\infty \quad \lim_{x \to a^-} f(x) = -\infty$$

Example 2. Find

(a.) $\lim_{x \to 4^+} \frac{5}{x-4}$ (b.) $\lim_{x \to 4^-} \frac{5}{x-4}$ (c.) $\lim_{x \to 4} \frac{5}{x-4}$

Definition. We write

$$\lim_{t \to a} \vec{r}(t) = \vec{b}$$

and say "the limit of $\vec{r}(t)$, as t approaches a, equals \vec{b} " if we can make vector $\vec{r}(t)$ arbitrary close to \vec{b} by taking t to be sufficiently close to a but not equal to a.

If $\vec{r}(t) = \langle f(t), g(t) \rangle$, then

$$\lim_{t \to a} \vec{r}(t) = \left\langle \lim_{t \to a} f(t), \lim_{t \to a} g(t) \right\rangle$$

provided the limits of the component functions exist.