Chapter 2. Limits and rates of change Section 2.3 Calculating limits using the limit laws

Limit laws Suppose that c is a constant and the limits $\lim_{x \to a} f(x)$ and $\lim_{x \to a} g(x)$ exist. Then 1. $\lim_{x \to a} [f(x) + g(x)] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$ 2. $\lim_{x \to a} [f(x) - g(x)] = \lim_{x \to a} f(x) - \lim_{x \to a} g(x)$ 3. $\lim_{x \to a} cf(x) = c \lim_{x \to a} f(x)$ 4. $\lim_{x \to a} f(x)g(x) = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x)$ 5. $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}$ if $\lim_{x \to a} g(x) \neq 0$ 6. $\lim_{x \to a} [f(x)]^n = \left[\lim_{x \to a} f(x)\right]^n$ where n is a positive integer 7. $\lim_{x \to a} c = c$ 8. $\lim_{x \to a} x = a$ 9. $\lim_{x \to a} x^n = a^n$ where n is a positive integer 10. $\lim_{x \to a} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \to a} f(x)}$ where n is a positive integer

Example 1. Given that $\lim_{x \to a} f(x) = 2$, $\lim_{x \to a} g(x) = -1$, and $\lim_{x \to a} h(x) = 10$. Find the limits that exist.

1. $\lim_{x \to a} [2f(x) - g(x) - h(x)]$

2.
$$\lim_{x \to a} \frac{g(x)}{h(x) - 2f(x)}$$

Example 2. Evaluate the given limit and justify each step. 1. $\lim_{x \to 4} (2x^2 + 4x - 1)$

2.
$$\lim_{y \to 3} \frac{3(8y^2 - 1)}{2y^2(y - 1)^4}$$

3.
$$\lim_{x \to 3} \sqrt[4]{x^2 + 2x + 1}$$

If f is a polynomial or a rational function and a is in the domain of f, then $\lim_{x \to a} f(x) = f(a)$ **Example 3.** Evaluate each limit, if it exist. 1. $\lim_{x \to -1} \frac{x^2 - x - 2}{x + 1}$

2.
$$\lim_{x \to -1} \frac{x^2 - x - 3}{x + 1}$$

4.
$$\lim_{t \to 1} \frac{t^3 - t}{t^2 - 1}$$

5.
$$\lim_{t \to 9} \frac{9-t}{3-\sqrt{t}}$$

6.
$$\lim_{x \to 0} \frac{x}{\sqrt{1+3x}-1}$$

8.
$$\lim_{t \to 2} \vec{r}(t), \ \vec{r}(t) = \left\langle \frac{4-t}{2-\sqrt{t}}, \frac{t^2-4}{t-2} \right\rangle$$

9.
$$\lim_{x \to -3} |x+3|$$

10.
$$\lim_{x \to 2} \frac{|x-2|}{x-2}$$

Example 4. Let

$$f(x) = \begin{cases} x^2 - 2x + 2, & \text{if } x < 1 \\ 3 - x, & \text{if } x \ge 1 \end{cases}$$
Find $\lim_{x \to 1} f(x)$.

Theorem If $f(x) \leq g(x)$ for all x in an open interval that contains a (except possibly at a) and the limits of f an g both exist as x approaches a, then

$$\lim_{x \to a} f(x) \le \lim_{x \to a} g(x)$$

The Squeeze Theorem If $f(x) \leq g(x) \leq h(x)$ for all x in an open interval that contains a (except possibly at a) and $\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L$, then

$$\lim_{x \to a} g(x) = L$$

Example 5. Use the Squeeze Theorem to show that $\lim_{x\to 0} x^2 \cos(20\pi x) = 0$.