Definition Let f be a function defined on (a, ∞). Then

$$
\lim _{x \rightarrow \infty} f(x)=L
$$

means that we can make values of $f(x)$ arbitrary close to L by taking x to be sufficiently large. Definition Let f be a function defined on $(-\infty, a)$. Then

$$
\lim _{x \rightarrow-\infty} f(x)=L
$$

means that we can make values of $f(x)$ arbitrary close to L by taking x to be sufficiently large negative.

Definition The line $y=L$ is called a horizontal asymptote of the curve $y=f(x)$ if either

$$
\lim _{x \rightarrow \infty} f(x)=L
$$

or

$$
\lim _{x \rightarrow-\infty} f(x)=L
$$

Limit laws Suppose that c is a constant and the limits $\lim _{x \rightarrow \pm \infty} f(x)$ and $\lim _{x \rightarrow \pm \infty} g(x)$ exist. Then

1. $\lim _{x \rightarrow \pm \infty}[f(x)+g(x)]=\lim _{x \rightarrow \pm \infty} f(x)+\lim _{x \rightarrow \pm \infty} g(x)$
2. $\lim _{x \rightarrow \pm \infty}[f(x)-g(x)]=\lim _{x \rightarrow \pm \infty} f(x)-\lim _{x \rightarrow \pm \infty} g(x)$
3. $\lim _{x \rightarrow \pm \infty} c f(x)=c \lim _{x \rightarrow \pm \infty} f(x)$
4. $\lim _{x \rightarrow \pm \infty} f(x) g(x)=\lim _{x \rightarrow \pm \infty} f(x) \cdot \lim _{x \rightarrow \pm \infty} g(x)$
5. $\lim _{x \rightarrow \pm \infty} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow \pm \infty} f(x)}{\lim _{x \rightarrow \pm \infty} g(x)}$ if $\lim _{x \rightarrow \pm \infty} g(x) \neq 0$
6. $\lim _{x \rightarrow \pm \infty}[f(x)]^{n}=\left[\lim _{x \rightarrow \pm \infty} f(x)\right]^{n}$ where n is a positive integer
7. $\lim _{x \rightarrow \pm \infty} c=c$
8. $\lim _{x \rightarrow \pm \infty} \sqrt[n]{f(x)}=\sqrt[n]{\lim _{x \rightarrow \pm \infty} f(x)}$ where n is a positive integer

Theorem If $r>0$ is a rational number, then

$$
\lim _{x \rightarrow \infty} \frac{1}{x^{r}}=\lim _{x \rightarrow-\infty} \frac{1}{x^{r}}=0
$$

Example 1. Find each of the following limits:
(a.) $\lim _{y \rightarrow \infty} \frac{7 y^{3}+4 y}{2 y^{3}-y^{2}+3}$
(b.) $\lim _{x \rightarrow \infty} \frac{x+4}{x^{3}-3}$
(c.) $\lim _{t \rightarrow \infty} \frac{t^{2}-3 t+1}{2 t+3}$

$$
\lim _{x \rightarrow \infty} \frac{a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}}{b_{m} x^{m}+b_{m-1} x^{m-1}+\ldots+b_{1} x+b_{0}}= \begin{cases}\frac{a_{n}}{b_{m}}, & \text { if } n=m \\ 0, & \text { if } n<m \\ \infty, & \text { if } n>m\end{cases}
$$

Example 2. Evaluate the following limits:
(a.) $\lim _{x \rightarrow \infty} \frac{\sqrt{x^{2}+4 x}}{4 x+1}$
(b.) $\lim _{x \rightarrow \infty} \sin x$
(c.) $\lim _{x \rightarrow \infty} \sin \frac{1}{x}$
(d.) $\lim _{x \rightarrow \infty} \frac{\sin ^{2} x}{x^{2}}$
(e.) $\lim _{x \rightarrow \infty} \frac{1-\cos x}{x^{2}}$
(f.) $\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}+3 x+1}-x\right)$

Example 3. Find the horizontal and vertical asymptotes of each curve
(a.) $y=\frac{x^{2}+4}{x^{2}-1}$
(b.) $y=\frac{x^{3}+1}{x^{2}+x}$

