Definition. The derivative of a function f at a number a, denoted by $f^{\prime}(a)$, is

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
$$

if the limit exist.
Example 1. Find $f^{\prime}(a)$ if $f(x)=\sqrt{2 x-3}, a>3 / 2$.

Geometric interpretation of the derivative. $f^{\prime}(a)$ is the slope of the tangent line to $y=f(x)$ at the point $(a, f(a))$.
Example 2. Find an equation of the tangent line to $f(x)=\sqrt{2 x-3}$ at the point $(2,1)$.

Other interpretations of the derivative.

- $f^{\prime}(a)$ is the instanteneous rate of change of $y=f(x)$ with respect to x when $x=a$.
- if $s=f(t)$ is the position function of a particle that moves along a straight line, then $f^{\prime}(a)$ is the velocity of the particle at time $t=a$

A function

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

is called the derivative of f.
Definition. A function f is differentiable at a if $f^{\prime}(a)$ exists. It is differentiable on an open interval (a, b) if it is differentiable at every number in the interval.

Example 3. Where is the function $f(x)=|x-2|$ differentiable?

Theorem. If f is differentiable at a, then f is continuous at a When is the function not differentiable at $x=a$?

- f has a "corner" or "kink" at a
- f is discontinuous at a
- the curve $y=f(x)$ has a vertical tangent line at $x=a$

