Section 3.11 Differentials; linear and quadratic approximations
Definition Let $y=f(x)$, where f is a differentiable function. Then the differential $d x$ is an independent variable; that is $d x$ can be given the value of any real number. The differential $d y$ is then defined in terms of $d x$ by the equation

$$
d y=f^{\prime}(x) d x
$$

Example 1. Find $d y$ if $y=x \tan x$.

Example 2.

(a.) Find $d y$ if $y=\sqrt{1-x}$
(b.) Find the value of $d y$ when $x=0$ and $d x=.02$

Suppose that $f(a)$ is a known number and the approximate value is to be calculated for $f(a+\Delta x)$ where Δx is small. Then

$$
f(a+\Delta x) \approx f(a)+d y=f(a)+f^{\prime}(a) \Delta x
$$

Example 3. Use differentials to find an approximate value for (a.) $\sqrt{36.1}$
(b.) $\sin 59^{0}$

Linear approximations.

The approximation

$$
f(x) \approx f(a)+f^{\prime}(a)(x-a)
$$

is called the linear approximation or tangent line approximation of f at a, and the function

$$
L(x)=f(a)+f^{\prime}(a)(x-a)
$$

is called the linearization of f at a.
Example 4. Find the linearization $L(x)$ of the function $f(x)=\frac{1}{\sqrt{2+x}}$ at $a=0$

Example 5. Verify the linear approximation at $a=0$
(a.) $\sqrt{1+x} \approx 1+\frac{1}{2} x$
(b.) $\sin x \approx x$

Example 6. Find the linear approximation of the function $f(x)=\sqrt{1-x}$ at $a=0$ and use it to approximate the numbers $\sqrt{0.9}$ and $\sqrt{0.99}$.

Quadratic approximations

Let's approximate curve $y=f(x)$ by a parabola $y=P(x)$ near $x=a$. To make sure that the approximation is a good one, we stipulate the following:

$$
\begin{aligned}
P(a) & =f(a) \\
P^{\prime}(a) & =f^{\prime}(a) \\
P^{\prime \prime}(a) & =f^{\prime \prime}(a)
\end{aligned}
$$

Example 7. Find the quadratic approximation for the function $f(x)=\cos x$ near $x=0$.

The quadratic approximation of f near a is

$$
f(x) \approx f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2}(x-a)^{2}
$$

Example 8. Find the quadratic approximation to $f(x)=\sqrt[3]{x}$ near $a=-8$.

