Section 3.2 Differentiation formulas

Table of derivatives

1.(C)' = 0, C is a constant,
2.(x)' = 1,
3.(x²)' = 2x,
4.(xⁿ)' = nxⁿ⁻¹,
5.
$$\left(\frac{1}{x}\right)' = -\frac{1}{x^2}$$

Differentiation formulas

Suppose c is a constant and both functions f(x) and g(x) are differentiable.

1.
$$(cf(x))' = cf'(x)$$
,
2. $(f(x) + g(x))' = f'(x) + g'(x)$,
3. $(f(x) - g(x))' = f'(x) - g'(x)$,
4. $(f(x)g(x))' = f'(x)g(x) + f(x)g'(x)$,
5. $\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x)g(x) - f(x)g'(x)}{g^2(x)}$.

Example 1. Differentiate each function. (a.) $f(x) = x^5 - 4x^3 + 2x - 3$

(b.)
$$f(x) = 3x^{2/3} - 2x^{5/2} + x^{-3}$$

(c.)
$$f(x) = x^2 \sqrt[3]{x^2}$$

(d.)
$$f(x) = \frac{2}{\sqrt[3]{x^2}} - \frac{1}{x\sqrt[3]{x}}$$

(e.)
$$f(x) = (x^5 + 3x^2 + 2x - 3)(x^2 + 3x + 5)$$

(f.)
$$g(x) = \frac{2x+3}{x^2-5x+5}$$

(g.)
$$f(z) = \frac{1 + \sqrt{z}}{1 - \sqrt{z}}$$

Example 2. Find the equation to the tangent line to the curve $y = x + \sqrt{x}$ at the point (1,2)

Example 3. The object is moving upward. Its height after t sec is given by $h(t) = 58t - 0.83t^2$ (a.) What is the maximum height reached by the object?

(b.) Find the instantaneous velocity at t = 1