Section 3.5 The Chain Rule

If the derivatives $g^{\prime}(x)$ and $f^{\prime}(g(x))$ both exist, and $F=f \circ g$ is the composite function defined by $F(x)=f(g(x))$, then $F^{\prime}(x)$ exists an is given by the product

$$
F(x)=f^{\prime}(g(x)) g^{\prime}(x)
$$

Example 1. Suppose that $F(x)=f(g(x))$, where $g(2)=5, g^{\prime}(2)=4, f(2)=3, f^{\prime}(2)=-2$, and $f^{\prime}(5)=11$. Find $F^{\prime}(2)$.

If n is any real number and $u=g(x)$ is differentiable, then

$$
\frac{d}{d x}[g(x)]^{n}=n[g(x)]^{n-1} g^{\prime}(x)
$$

Example 2. Find the derivative of each function

1. $y=\sec (2 x)$
2. $y=\sin \left(x^{2}\right)$
3. $y=\left(1+\cos ^{2} x\right)^{6}$
4. $y=\left(1+\sqrt{x^{2}+2}\right)^{3}$
5. $y=\sqrt[4]{\frac{t^{3}+1}{t^{3}-1}}$
6. $y=\sin ^{2}(\cos 4 x)$

Example 3. Find the equation of the tangent line to the curve $y=\frac{8}{\sqrt{4+3 x}}$ at the point $(4,2)$.

