Section 3.6 Implicit differentiation.

Some functions are defined implicitly by a relation between x and y, where x is the independent variable and y depends on x. In order to find the derivative of y with respect to x, we can use the method of implicit differentiation. This consists of differentiating both sides of the relation with respect to x and then solving the resulting equation for y^{\prime}.
Example 1. Find $d y / d x$ by implicit differentiation.

1. $x^{2}-x y+y^{3}=8$
2. $\frac{y}{x-y}=x^{2}+1$
3. $\sqrt{x+y}+\sqrt{x y}=6$
4. $x \sin y+\cos 2 y=\cos y$

Example 2. Let y be the independent variable and x be the dependent variable. Use implicit differentiation to find $d x / d y$ if

$$
\left(x^{2}+y^{2}\right)^{2}=4 x^{2} y
$$

Definition. Two curves are called orthogonal if at each point of intersection their tangent lines are perpendicular.

Example 3. Show that the curves $x^{2}-y^{2}=5$ and $4 x^{2}+9 y^{2}=72$ are orthogonal.

