## Section 3.7. Derivatives of vector functions

Definition. The derivative of a vector function $\vec{r}(t)$ at a number $a$, denoted by $\vec{r}^{\prime}(a)$, is

$$
\vec{r}^{\prime}(a)=\lim _{h \rightarrow 0} \frac{\vec{r}(a+h)-\vec{r}(a)}{h}=\lim _{t \rightarrow a} \frac{\vec{r}(t)-\vec{r}(a)}{t-a}
$$

if the limits exist.
If $\vec{r}(t)=<x(t), y(t)>$ is a vector function, then

$$
\vec{r}^{\prime}(t)=\lim _{h \rightarrow 0} \frac{\vec{r}(t+h)-\vec{r}(t)}{h}=\left\langle\lim _{h \rightarrow 0} \frac{x(t+h)-x(t)}{h}, \lim _{h \rightarrow 0} \frac{y(t+h)-y(t)}{h}\right\rangle=<x^{\prime}(t), y^{\prime}(t)>
$$ if both $x^{\prime}(t)$ and $y^{\prime}(t)$ exist.

Example 1. Find the domain and the derivative of the vector function $\vec{r}(t)=<t^{2}-4, \sqrt{t-4}>$.

Example 2. Find a tangent vector of unit length for the line given by $\vec{r}(t)=2 \sin t \vec{\imath}+3 \cos t \vec{\jmath}$ at the point where $t=\pi / 6$.

Definition. If $\vec{r}(t)=<x(t), y(t)>$ is a vector function representing the position of a particle at time $t$, then
velocity at time $t$ is

$$
\vec{v}(t)=\vec{r}^{\prime}(t)=<x^{\prime}(t), y^{\prime}(t)>
$$

speed at time $t$ is

$$
s=|\vec{v}(t)|=\sqrt{\left[x^{\prime}(t)\right]^{2}+\left[y^{\prime}(t)\right]^{2}}
$$

Example 3. The vector function $\vec{r}(t)=<t, 25 t-5 t^{2}>$ represents the position of a particle at time $t$. Find the velocity and the speed at $t=1$.

